, Volume 14, Issue 4, pp 1333–1343 | Cite as

Multiyear time-lapse ERT to study short- and long-term landslide hydrological dynamics

  • Edouard Palis
  • Thomas Lebourg
  • Maurin Vidal
  • Clara Levy
  • Emmanuel Tric
  • Mickael Hernandez
Original Paper


The geology of the “Vence” landslide (0.8 million m3, south-eastern France) explains the complex hydrology of the site which plays a key role in the destabilization of the slope (water circulation within the sliding mass, fluid exchanges between superficial layers and deep karstic aquifer through faults). To understand fluid circulations within the unstable slope, a 9.5-year multi-parametric survey was set up. The survey combines electrical resistivity tomography (daily acquisition), rainfall records since 2006 and boreholes monitoring groundwater level since 2009. The objective of this work is to present an automated clustering analysis applied to the ERT data enabled to locate geological units displaying distinct hydrogeological behaviours. Clustering analysis, based on a hierarchical ascendant classification (HAC), helped to simplify the ERT section isolating three groups of apparent resistivity values. Comparing the variations of these clusters’ behaviours in time to the variations of the groundwater levels on site, we identified hydrogeological units. The role of the faults cutting the substratum is thereby highlighted. It is the simultaneous analysis of such a large real dataset that allowed obtaining robust results characteristic of the long-term behaviour of the natural hydrogeological system. This type of qualitative information on the variability of the slope hydrogeological behaviour both spatially and temporally is crucial to help improving the conversion of resistivity data into hydrologic quantities. Indeed, the definition of petrophysical models to convert ERT measurements into hydrological measurements should be site-specific and take into account the spatial and temporal variability of the medium. In this work, we show a method that can also help to focus on the areas in depth that have different levels of permeability and observe how the saturation degree evolves in time. This can be used to optimize the location of additional instrumentation (such as temperature probes and chemical sampling) and, thus, help in the prevention of the risk in such problematic areas.


Electrical resistivity tomography Landslide Clustering analysis Long-term hydrological behaviour 



This work was supported by the city of Vence. Many thanks to the reviewers of this manuscript who helped in improving it. We would like to thank Julien Gance (Iris Instruments) and Gilles Fischer who helped in producing the inverted ERT images.


  1. Amidu SA, Dunbar JA (2007) Geoelectric studies of seasonal wetting and drying of a Texas vertisol. Vadose Zone J 6(3):511–523. doi: 10.2136/vzj2007.0005 CrossRefGoogle Scholar
  2. Archie GE (1942) The electrical resistivity log as an aid in determining some reservoir characteristics. Trans Am Inst Min Metall Eng 146:54–62Google Scholar
  3. Bernardie S, Desramaut N, Malet J-P, Gourlay M, Granjean G (2014) Prediction of changes in landslide rates induced by rainfall. Landslides. doi: 10.1007/s10346-014-0495-8 Google Scholar
  4. Bièvre G, Jongmans D, Winiarski T, Zumbo V (2012) Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrol Process 26(14):2128–2142. doi: 10.1002/hyp.7986 CrossRefGoogle Scholar
  5. Binley A, Winship P, West LJ, Pokar M, Middleton R (2002) Seasonal variation of moisture content in unsaturated sandstone inferred from borehole radar and resistivity profiles. J Hydrol 267:160–172 PII: S0022-1694(02)00147-6CrossRefGoogle Scholar
  6. Bogaard TA, Antoine P, Desvarreux P, Giraud A, Van Asch TWJ (2000) The slope movements within the Mondorès graben (Drôme, France); the interaction between geology, hydrology and typology. Eng Geol 55:297–312 PII: S0013-7952(99)00084-8CrossRefGoogle Scholar
  7. Chambers JE, Wilkinson PB, Kuras O, Ford JR, Gunn DA, Meldrum PI, Pennington CVL, Weller AL, Hobbs PRN, Ogilvy RD (2011) Three-dimensional geophysical anatomy of an active landslide in Lias group mudrocks, Cleveland Basin, UK. Geomorphology 125:472–484. doi: 10.1016/j.geomorph.2010.09.017 CrossRefGoogle Scholar
  8. Crosta GB, Frattini P (2008) Rainfall-induced landslides and debris flows. Hydrol Process 22:473–477. doi: 10.1002/hyp.6885 CrossRefGoogle Scholar
  9. Daily W, Ramirez A, LaBrecque D, Nitao J (1992) Electrical resistivity tomography of vadose water movement. Water Resour Res 28(5):1429–1442CrossRefGoogle Scholar
  10. Day-Lewis FD, Lane JW Jr, Harris JM, Gorelick SM (2003) Time-lapse imaging of saline-tracer transport in fractured rock using difference-attenuation radar tomography. Water Resour Res 39(10):1290. doi: 10.1029/2002WR001722 CrossRefGoogle Scholar
  11. Ellis RG, Oldenburg DW (1994) Applied geophysical inversion. Geophys J Int 116:5–11CrossRefGoogle Scholar
  12. Erginal AE, Öztürk B, Ekinci YL, Demirci A (2009) Investigation of the nature of slip surface using geochemical analyses and 2-D electrical resistivity tomography: a case study from Lapseki area, NW Turkey. Environ Geol 58:1167–1175. doi: 10.1007/s00254-008-1595-4 CrossRefGoogle Scholar
  13. Ewing RP, Hunt AG (2006) Dependence of the electrical conductivity on saturation in real porous media. Vadose Zone J 5(2):731–741. doi: 10.2136/vzj2005.0107 CrossRefGoogle Scholar
  14. Flageollet J-C, Malet J-P, Maquaire O (2000) The 3D structure of the Super-Sauze earthflow: a first stage towards modelling its behaviour. Phys Chem Earth (B) 25(9): 785–791. PII: S1464–1909(00)00102–7Google Scholar
  15. Friedel S, Thielen A, Springman SM (2006) Investigation of a slope endangered by rainfall-induced landslides using 3D resistivity tomography and geotechnical testing. J Appl Geophys 60(2):100–114. doi: 10.1016/j.jappgeo.2006.01.001 CrossRefGoogle Scholar
  16. Gance J, Malet J-P, Supper R, Sailhac P, Ottowitz D, Jochum B (2016) Permanent electrical resistivity measurements for monitoring water circulation in clayey landslides. J Appl Geophys 126:98–115. doi: 10.1016/j.jappgeo.2016.01.011 CrossRefGoogle Scholar
  17. Genelle F, Sirieix C, Riss J, Naudet V (2012) Monitoring landfill cover by electrical resistivity tomography on an experimental site. Eng Geol 145–146:18–29Google Scholar
  18. Göktürkler G, Balkaya C, Erhan Z (2008) Geophysical investigation of a landslide: the Altındağ landslide site, İzmir (western Turkey). J Appl Geophys 65:84–96. doi: 10.1016/j.jappgeo.2008.05.008 CrossRefGoogle Scholar
  19. Guglielmi Y, Cappa F, Binet S (2005) Coupling between hydrogeology and deformation of mountainous rock slopes: insights from La Clapière area (southern Alps, France). Compt Rendus Geosci 337:1154–1163. doi: 10.1016/j.crte.2005.04.016 CrossRefGoogle Scholar
  20. Grandjean G, Pennetier C, Bitri A, Meric O, Malet J-P (2006) Caractérisation de la structure interne et de l’état hydrique de glissements argilo-marneux par tomographie géophysique: l’exemple du glissement-coulée de Super-Sauze (Alpes du Sud, France). Compt Rendus Geosci 338:587–595. doi: 10.1016/j.crte.2006.03.013 CrossRefGoogle Scholar
  21. Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modelling in areas of complex geology. J Appl Geophys 29(3–4):211–226Google Scholar
  22. Hayley K, Bentley LB, Pidlisecky A (2010) Compensating for temperature variations in time-lapse electrical resistivity difference imaging. Geophysics 75(4):WA51–WA59. doi: 10.1190/1.3478208 CrossRefGoogle Scholar
  23. Helmstetter A, Garambois S (2010) Seismic monitoring of Séchilenne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J Geophys Reseach 115:F03016. doi: 10.1029/2009JF001532 CrossRefGoogle Scholar
  24. Henry P (1997) Relationship between porosity, electrical conductivity, and cation exchange capacity in Barbados wedge sediments. in Proceedings of the Ocean Drilling Program. Scientific Results. vol. 156. Ocean Drilling Program, p. 137–149Google Scholar
  25. Israil M, Al-Hadithi M, Singhal DC, Kumar B (2004) Groundwater-recharge estimation using a surface electrical resistivity method in the Himalayan foothill region, India. Hydrogeol J 14:44–50. doi: 10.1007/s10040-004-0391-8 CrossRefGoogle Scholar
  26. Jain AK, Dubes RC (1988) Algorithms for clustering data. Prentice-Hall, IncGoogle Scholar
  27. Jayawickreme DH, Van Dam RL, Hyndman DW (2010) Hydrological consequences of land-cover change: quantifying the influence of plants on soil moisture with time-lapse electrical resistivity. Geophysics 75(4):WA43–WA50. doi: 10.1190/1.3464760 CrossRefGoogle Scholar
  28. Jomard H, Lebourg T, Binet S, Tric E, Hernandez M (2007) Characterization of an internal slope movement structure by hydrogeophysical surveying. Terra Nov. 19:48–57. doi: 10.1111/j.1365-3121.2006.00712.x
  29. Jomard H, Lebourg T, Guglielmi Y, Tric E (2010) Electrical imaging of sliding geometry and fluids associated with a deep seated landslide (La Clapière, France). Earth Surf Process Landf 35(5):588–599. doi: 10.1002/esp.1941 Google Scholar
  30. Jongmans D, Hemroulle P, Demanet D, Renardy F, Vanbrabant Y (2000) Application of 2D electrical and seismic tomography techniques for investigating landslides. Eur J Environ Eng Geophys 5:75–89. doi: 10.3997/2214-4609.201406464 Google Scholar
  31. Kim J-H, Yi M-J, Park S-G, Kim JG (2009) 4-D inversion of DC resistivity monitoring data acquired over a dynamically changing earth model. J Appl Geophys 68:522–532. doi: 10.1016/j.jappgeo.2009.03.002 CrossRefGoogle Scholar
  32. LaBrecque DJ, Heath G, Sharpe R, Versteeg R (2004) Autonomous monitoring of fluid movement using 3-D electrical resistivity tomography. J Environ Eng Geophys 9(3):53–62CrossRefGoogle Scholar
  33. Laurent O, Stephan J-F, Popoff M (2000) Miocene structural development of the southern branch of the Castellane fold-thrust belt (southern subalpine belts). Géol Fr 3:33–65Google Scholar
  34. Lebourg T, Binet S, Tric E, Jomard H, El Bedoui S (2005) Geophysical survey to estimate the 3D sliding surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nov. 17:399–406. doi: 10.1111/j.1365-3121.2005.00623.x
  35. Lebourg T, Hernandez M, Zerathe S, El Bedoui S, Jomard H, Fresia B (2010) Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach. Eng Geol 114:238–250. doi: 10.1016/j.enggeo.2010.05.001 CrossRefGoogle Scholar
  36. Lee C-C, Yang C-H, Liu H-C, Wen K-L, Wang Z-B, Chen YJ (2008) A study of the hydrogeological environment of the Lishan landslide area using resistivity image profiling and borehole data. Eng Geol 98:115–125. doi: 10.1016/j.enggeo.2008.01.012 CrossRefGoogle Scholar
  37. Lehmann P, Gambazzi F, Suski B, Baron L, Askarinejad A, Springman SM, Holliger K, Or D (2013) Evolution of soil wetting patterns preceding a hydrologically induced landslide inferred from electrical resistivity survey and point measurements of volumetric water content and pore water pressure. Water Resour Res 49(12):7992–8004Google Scholar
  38. Lindenmaier F, Zehe E, Dittfurth A, Ihringer J (2005) Process identification at a slow-moving landslide in the Vorarlberg Alps. Hydrol Process 19:1635–1651. doi: 10.1002/hyp.5592 CrossRefGoogle Scholar
  39. Loke MH (1996-2014) Tutorials: 2-D and 3-D electrical imaging surveys,, 169 pp
  40. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152. doi: 10.1111/j.1365-2478.1996.tb00142.x CrossRefGoogle Scholar
  41. Looms MC, Jensen KH, Nielsen L, Binley A, Thybo H (2008) Monitoring unsaturated flow and transport using cross-borehole geophysical methods. Vadose Zone J 7(1):227–237CrossRefGoogle Scholar
  42. Luongo R, Perrone A, Piscitelli S, Lapenna V (2012) A Prototype System for Time-Lapse Electrical Resistivity Tomographies. Int J Geophys 2012:1–12Google Scholar
  43. Malet J-P, Van Asch TWJ, Van Beek R, Maquaire O (2005) Forecasting the behaviour of complex landslides with a spatially distributed hydrological model. Nat Hazards Earth Syst Sci 5(1):71–85CrossRefGoogle Scholar
  44. Mangan C (1982) Géologie et hydrogéologie karstique du bassin de la Brague et ses bordures (Alpes-Maritimes, France). Doctoral Dissertation, Université de Nice Sophia- AntipolisGoogle Scholar
  45. Marescot L, Monnet R, Chapellier D (2008) Resistivity and induced polarization surveys for slope instability studies in the Swiss Alps. Eng Geol 98:18–28. doi: 10.1016/j.enggeo.2008.01.01 CrossRefGoogle Scholar
  46. Mikŏs M, Četina M, Brilly M (2004) Hydrologic conditions responsible for triggering the Stože landslide, Slovenia. Eng Geol 73:193–213. doi: 10.1016/j.enggeo.2004.01.011 CrossRefGoogle Scholar
  47. Miller CR, Routh PS, Brosten TR, McNamara JP (2008) Application of time-lapse ERT imaging to watershed characterization. Geophysics 73(3):G7–G17. doi: 10.1190/1.2907156 CrossRefGoogle Scholar
  48. Montety V, Marc V, Emblanch C, Malet J-P, Bertrand C, Maquaire O, Bogaard TA (2007) Identifying the origin of groundwater and flow processes in complex landslides affecting black marls: insights from a hydrochemical survey. Earth Surf Process Landf 32:32–48. doi: 10.1002/esp.1370 CrossRefGoogle Scholar
  49. Mualem Y, Friedman SP (1991) Theoretical prediction of electrical conductivity in saturated and unsaturated soil. Water Resour Res 27(10):2771–2777CrossRefGoogle Scholar
  50. Niesner E, Weidinger JT (2008) Investigation of a historic and recent landslide area in Ultrahelvetic sediments at the northern boundary of the Alps (Austria) by ERT measurements. Lead Edge 27:1498. doi: 10.1190/1.3011022 CrossRefGoogle Scholar
  51. Oldenborger GA, Knoll MD, Routh PS, LaBrecque DJ (2007) Time-lapse ERT monitoring of an injection/withdrawal experiment in a shallow unconfined aquifer. Geophysics 72(4):F177–F187. doi: 10.1190/1.2734365 CrossRefGoogle Scholar
  52. Palis E, Lebourg T, Tric E, Malet J-P, Vidal M (2016), Long-term monitoring of a large deep-seated landslide (La Clapière, South-East French Alps): initial study. Landslides 1-16. doi: 10.1007/s10346-016-0705-7
  53. Perrone A, Lapenna V, Piscitelli S (2014) Electrical tomography technique for landslide investigations: a review. Earth-Sci Rev. doi: 10.1016/j.earscirev.2014.04.002 Google Scholar
  54. Piegari E, Cataudella V, Di Maio R, Milano L, Nicodemi M, Soldovieri MG (2009) Electrical resistivity tomography and statistical analysis in landslide modelling: a conceptual approach. J Appl Geophys 68(2):151–158. doi: 10.1016/j.jappgeo.2008.10.014 CrossRefGoogle Scholar
  55. Prokešová R, Medveďová A, Tábořík P, Snopková Z (2013) Towards hydrological triggering mechanisms of large deep-seated landslides. Landslides 10(3):239–254Google Scholar
  56. Ramirez AL, Daily WD, Newmark RL (1995) Electrical resistance tomography for steam injection monitoring and process control. J Environ Eng Geophys 1(A):39–51. doi: 10.4133/JEEG1.A.39 CrossRefGoogle Scholar
  57. Rein A, Hoffmann R, Dietrich P (2004) Influence of natural time-dependent variations of electrical conductivity on DC resistivity measurements. J Hydrol 285:215–232CrossRefGoogle Scholar
  58. Sass O, Bell R, Glade T (2008) Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology 93(1–2):89–103. doi: 10.1016/j.geomorph.2006.12.019 CrossRefGoogle Scholar
  59. Schmutz M, Guérin R, Andrieux P, Maquaire O (2009) Determination of the 3D structure of an earthflow by geophysical methods: the case of Super Sauze, in the French southern Alps. J Appl Geophys 68:500–507. doi: 10.1016/j.jappgeo.2008.12.004 CrossRefGoogle Scholar
  60. Sen PN, Goode PA (1992) Influence of temperature on electrical conductivity on shaly sands. Geophysics 57(1):89–96. doi: 10.1190/1.1443191 CrossRefGoogle Scholar
  61. Singha K, Gorelick SM (2005) Saline tracer visualized with three-dimensional electrical resistivity tomography: field-scale spatial moment analysis. Water Resour Res 41:W05023. doi: 10.1029/2004WR003460 CrossRefGoogle Scholar
  62. Singha K, Gorelick SM (2006) Hydrogeophysical tracking of three-dimensional tracer migration: the concept and application of apparent petrophysical relations. Water Resour Res 42:W06422. doi: 10.1029/2005WR004568 CrossRefGoogle Scholar
  63. Singha K, Moysey S (2006) Accounting for spatially variable resolution in electrical resistivity tomography through field-scale rock-physics relations. Geophysics 71(4):A25–A28. doi: 10.1190/1.2209753 CrossRefGoogle Scholar
  64. Slater LD, Binley A, Brown D (1997) Electrical imaging of fractures using ground-water salinity change. Ground Water 35(3):436–442CrossRefGoogle Scholar
  65. Travelletti J, Sailhac P, Malet J-P, Grandjean G, Ponton J (2012) Hydrological response of weathered clay-shale slopes: water infiltration monitoring with time-lapse electrical resistivity tomography. Hydrol Process 26(14):2106–2119Google Scholar
  66. Uhlemann S, Wilkinson PB, Chambers JE, Maurer H, Merritt AJ, Gunn DA, Meldrum PI (2015) Interpolation of landslide movements to improve the accuracy of 4D geoelectrical monitoring. J Appl Geophisics 121:93–105. doi: 10.1016/j.appgeo.2015.07.003 CrossRefGoogle Scholar
  67. Vallet A, Bertrand C, Fabbri O, Mudry J (2015) An efficient workflow to accurately compute groundwater recharge for the study of rainfall-triggered deep-seated landslides, application to the Séchilienne unstable slope (western Alps). Hydrol Earth Syst Sci 19:427–449. doi: 10.5194/hess-19-427-2015 CrossRefGoogle Scholar
  68. Van Dam RL, Simmons CT, Hyndman DW, Wood WW (2009) Natural free convection in porous media: first field documentation in groundwater. Geophys Res Lett 36(11):L11403. doi: 10.1029/2008GL036906 CrossRefGoogle Scholar
  69. Van Den Eeckhaut M, Verstraeten G, Poesen J (2007) Morphology and internal structure of a dormant landslide in a hilly area: the Collinabos landslide (Belgium). Geomorphology 89(3–4):258–273. doi: 10.1016/j.geomorph.2006.12.005 CrossRefGoogle Scholar
  70. Viero A, Galgaro A, Morelli G, Breda A, Freancese RG (2015) Investigations on the structural setting of a landslide-prone slope by means of three-dimensional electrical resistivity tomography. Nat Hazards 78:1369–1385. doi: 10.1007/s11069-015-1777-8 CrossRefGoogle Scholar
  71. Waxman MH, Thomas EC (1974) Electrical conductivities in shaly sands—I. The relation between hydrocarbon saturation and resistivity index; II. The temperature coefficient of electrical conductivity. J Pet Technol 26(2):213–225. doi: 10.2118/4094-PA CrossRefGoogle Scholar
  72. Yilmaz S (2007) Investigation of gürbulak landslide using 2d electrical resistivity image profiling method (Trabzon, northeastern Turkey). J Environ Eng Geophys 12(2):199–205. doi: 10.2113/JEEG12.2.199 CrossRefGoogle Scholar
  73. Zhou QY, Shimada J, Sato A (2001) Three-dimensional spatial and temporal monitoring of soil water content using electrical resistivity tomography. Water Resour Res 37(2):273–285CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • Edouard Palis
    • 1
  • Thomas Lebourg
    • 1
  • Maurin Vidal
    • 1
  • Clara Levy
    • 2
  • Emmanuel Tric
    • 1
  • Mickael Hernandez
    • 3
  1. 1.Université Côte d’Azur, Observatoire de la Côte d’Azur, CNRS, IRDGéoazurValbonneFrance
  2. 2.BRGMOrléansFrance
  3. 3.Azur Géo LogicCagnes-sur-MerFrance

Personalised recommendations