Landslides

, Volume 14, Issue 3, pp 833–847 | Cite as

Large volcanic landslide and debris avalanche deposit at Meru, Tanzania

  • A. Delcamp
  • M. Kervyn
  • M. Benbakkar
  • S. Kwelwa
  • D. Peter
Original Paper

Abstract

Meru volcano is located within the Northern Tanzanian Divergence Zone where the east branch of the East African Rift splits into several branches. The 4565-m-high Meru volcano is breached on the east flank by a horseshoe-shaped scar following a major collapse associated with the Momella debris avalanche approximately 9000 years ago. Remote sensing combined with detailed field mapping allowed the characterisation of the Momella debris avalanche deposit, structure, and texture. Hummocks, ridges, lineaments, lobes, grabens and shear zones are observed on the surface of the deposit. The most common facies observed are the mixed facies with indurated and shattered outcrops and the matrix facies. The collapse involved a volume of 20 ± 2 km3 with a deposit that spread over an area of 1250 km2, up to the base of Kilimanjaro. Based on field evidence, we suggest that water played a key role in the deformation, facies formation, avalanche emplacement and mobility of the entire deposit but to a lesser extent south of Ngurodoto complex. The deformation and emplacement of the avalanche were accommodated by both extension and shearing on a water-fluidised basal layer.

Keywords

Meru Tanzania Volcanic landslide Debris avalanche deposit Water 

Supplementary material

10346_2016_757_MOESM1_ESM.doc (42.5 mb)
ESM 1(DOC 43498 kb)

References

  1. Andrade D, van Wyk de Vries B (2010) Structural analysis of the early stages of catastrophic stratovolcano flank-collapse using analogue models. Bull Volcanol 72:771–789. doi:10.1007/s00445-010-0363-x CrossRefGoogle Scholar
  2. Bernard B, van Wyk de Vries B, Barba D, Leyrit H, Robin C, Alcaraz S, Samaniego P (2008) The Chimborazo sector collapse and debris avalanche: deposit characteristics as evidence of emplacement mechanisms. J Volcanol Geotherm Res 176:36–43CrossRefGoogle Scholar
  3. Calais E, d’Oreye N, Albaric J, Deschamps A, Delvaux D, Déverchère J, Ebinger C, Ferdinand RW, Kervyn F, Macheyeki AS, Oyen A, Perrot J, Saria E, Smets B, Stamps DS, Wauthier C (2008) Strain accommodation by slow slip and dyking in a youthful continental rift, East Africa. Nature 456:783–787. doi:10.1038/nature07478 CrossRefGoogle Scholar
  4. Cattermole P (1982) Meru—a Rift Valley giant: Volcano News, 11:i"3Google Scholar
  5. Corominas J (1996) The angle of reach as a mobility index for small and large landslides. Can Geotech J 33(2):260–271CrossRefGoogle Scholar
  6. Cox KG, Bell JD, Pankhurst RJ (1979) The interpretation of igneous rocks: London. George Allen & Unwin, Ltd., England, p. 450CrossRefGoogle Scholar
  7. Davies TR, McSaveney MJ (2009) The role of rock fragmentation in the motion of large landslides. Eng Geol 109:67–79CrossRefGoogle Scholar
  8. Delcamp A, Delvaux D, Kwelwa S, Macheyeki A, Kervyn M (2016) Sector collapse events at volcanoes in the north Tanzanian divergence zone and their implications for regional tectonics. GSA 128:169–186. doi:10.1130/B31119.1 Google Scholar
  9. Delcamp A, Roberti G, van Wyk de Vries B (submitted) (in revision to Bulletin of Volcanology) Water storage and water release in volcanoes during gravitational deformation and landslides.Google Scholar
  10. Dufresne A, Salinas S, Siebe C (2010) Substrate deformation associated with the Jocotitlán edifice collapse and debris avalanche deposit, Central México. J Volcanol Geotherm Res 197:133–148. doi:10.1016/j.jvolgeores.2010.02.019 CrossRefGoogle Scholar
  11. Glicken H (1986) Rockslide-debris avalanche of May 18, 1980, Mount St. Helens Volcano, Washington. Ph.D., University California, Santa Barbara, 303 p.Google Scholar
  12. Hecky, RE (1971) The palaeolimnology of the alkaline, saline lakes on the Mt Meru lahars. PhD thesis, Duke University.Google Scholar
  13. Heim A (1932) Bergsturz und Menschenleben. Zurich: Fretz & Wasmuth Verlag.Google Scholar
  14. Hsu KJ (1975) Catastrophic debris streams (sturzstroms) generated by rockfalls. GSA 86(1):129–140CrossRefGoogle Scholar
  15. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-Filled SRTM for the Globe, Version 4: Consortium for Spatial Information Shuttle Radar Topographic Mission 90 m Database: http://srtm.csi.cgiar.org (accessed 2015).
  16. Kelfoun K, Druitt TH (2005) Numerical modelling of the Socompa rock avalanche, Chile. J Geoph Res 110:B12202. doi:10.1029/2005JB003758 CrossRefGoogle Scholar
  17. Keller J, Klaudius J, Kervyn M, Ernst GGJ, Mattsson HB (2010) Fundamental changes in the activity of the natrocarbonatite volcano Oldoinyo Lengai, Tanzania. I. New magma composition. Bull Volcanol 72:893–912. doi:10.1007/s00445–010–0371-x CrossRefGoogle Scholar
  18. Kervyn M, Ernst GGJ, Vaughan RG, Keller J, Klaudius J, Pradal E, Belton F, Mattsson HB, Mbede E, Jacobs P (2010) Fundamental changes in the activity of the natrocarbonatite volcano OldoinyoLengai, Tanzania. Bull Volcanol 72:913–931. doi:10.1007/s00445-010-0360-0 CrossRefGoogle Scholar
  19. Le Bas MJ, Streickeisen AL (1991) The IUGS systematics of igneous rocks. J Geol Soc London 148.Google Scholar
  20. Le Gall B, Gernigon L, Rolet J, Ebinger C, Gloaguen R, Nilsen O, Dypvik H, Deffontaines B, Mruma A (2004) Neogene–Holocene rift propagationin Central Tanzania: Morphostructural and aeromagnetic evidence from the Kilombero area. GSA 116:490–510. doi:10.1130/B25202.1 CrossRefGoogle Scholar
  21. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331CrossRefGoogle Scholar
  22. Li T (1983) A mathematical model for predicting the extent of a major rockfall. Zeitschrift fur Geomorphologie 27(4):473–482Google Scholar
  23. Macheyeki AS, Delvaux D, De Batist M, Mruma A (2008) Fault kinematics and tectonic stress in the seismically active Manyara–Dodoma rift segment in Central Tanzania—implications for the east African rift. J Afr Earth Sci 51:163–188. doi:10.1016/j.jafrearsci.2008.01.00 CrossRefGoogle Scholar
  24. Manzella I, Labiouse V (2008) Qualitative analysis of rock avalanches propagation by means of physical modelling of not constrained gravel flows. Rock Mech Rock Eng 41:133–151CrossRefGoogle Scholar
  25. Naranjo JA, Francis P (1987) High velocity debris avalanche at Lastarria volcano in the north Chilean Andes. Bull Volcanol 49:509–514CrossRefGoogle Scholar
  26. Nyblade AA, Birt C, Langston CA, Owens TJ, Last RJ (1996) Seismic experiment reveals rifting of craton in Tanzania. Eos Transactions AGU 77:517–521. doi:10.1029/96EO00339 CrossRefGoogle Scholar
  27. Paguican EMB, van Wyk de Vries B, Lagmay A (2014) Hummocks: how they form and how they evolve in rockslide-debris avalanches. Landslides 11:67–80. doi:10.1007/s10346-012-0368-y CrossRefGoogle Scholar
  28. Palmer BA, Neall VE (1989) The Murimotu formation 9500 year old deposits of a debris avalanche and associated lahars, mount Ruapehu, North Island, New Zealand. New Zealand J Geol Geoph 32:477–486CrossRefGoogle Scholar
  29. Roberts, MA (2002) The geochemical and volcanological evolution of the Mt. Meru region, Northern Tanzania. PhD thesis, University of Cambridge.Google Scholar
  30. Roverato M, Capra L, Sulpizio R, Norini G (2011) Stratigraphic reconstruction of two debris avalanche deposits at Colima Volcano (Mexico): insights into pre-failure conditions and climate influence. J Volcanol Geotherm Res 207:33–46. doi:10.1016/j.jvolgeores.2011.07.003 CrossRefGoogle Scholar
  31. Roverato M, Cronin SJ, Procter JN, Capra L (2014) Textural features as indicators of debris avalanche transport and emplacement, Taranaki volcano. GSA 127(1–2):3. doi:10.1130/B30946.1 Google Scholar
  32. Scheidgger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5(4):231–236CrossRefGoogle Scholar
  33. Shea T, van Wyk de Vries B (2008) Structural analysis and analogue modeling of the kinematics and dynamics of rockslide avalanches. Geosphere 4:657–686CrossRefGoogle Scholar
  34. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRefGoogle Scholar
  35. Tost M, Cronin SJ, Procter JN (2014) Transport and emplacement mechanisms of channelised long-runout debris avalanches, Ruapehu volcano, New Zealand. Bull Volcanol 76:881CrossRefGoogle Scholar
  36. Ui T (1983) Volcanic dry avalanche deposits—identification and comparison with nonvolcanic debris stream deposits. J Volcanol Geotherm Res 18(1):135–150CrossRefGoogle Scholar
  37. Ui T, Takarada S, Yoshimoto M (2000) Debris avalanches. In Encylopedia of volcanoes, first edn. Academic Press, pp. 617–626Google Scholar
  38. van Wyk de Vries B, Davies T (2015) Landslides, debris avalanches and volcanic gravitational deformation. In Encylopedia of volcanoes, second edn. Academic Press, pp. 665–682Google Scholar
  39. van Wyk de Vries B, Márquez A, Herrera R, Granja Bruña JL, Llanes P, Delcamp A (2014) Craters of elevation revisited: forced-folds, bulging and uplift of volcanoes. Bull Volcanol 76:875. doi:10.1007/s00445-014-0875-x CrossRefGoogle Scholar
  40. van Wyk de Vries B, Self S, Francis PW, Keszthelyi L (2001) A gravitational spreading origin for the Socompa debris avalanche. J Volcanol Geotherm Res 105:225–247CrossRefGoogle Scholar
  41. van Wyk de Vries B, Delcamp A (2015) Volcanic debris avalanches: in landslides hazards. Elsevier, Risks and Disasters, pp. 131–157. doi:10.1016/B978-0-12-396452-6.00005-7 Google Scholar
  42. Vaughan RG, Kervyn M, Realmuto V, Abrams M, Hook SJ (2008) Satellite measurements of recent volcanic activity at Oldoinyo Lengai, Tanzania. J Volcanol Geotherm Res 173:196–206. doi:10.1016/j.jvolgeores.2008.01.028 CrossRefGoogle Scholar
  43. Voight B, Sousa J (1994) Lessons from Ontake-san: a comparative analysis of debris avalanche dynamics. Eng Geol 38:261–297CrossRefGoogle Scholar
  44. Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St. Helens rockslide-avalanche of 18 may 1980. Geotechnique 33:243–273CrossRefGoogle Scholar
  45. Wadge G, Francis PW, Ramirez CF (1995) The Socompa collapse and avalanche event. J Volcanol Geotherm Res 66:309–336CrossRefGoogle Scholar
  46. Wilkinson P, Downie C, Cattermole PJ (1983) Quarter degree sheet 55, Arusha, 1:125000: Geological Survey of TanzaniaGoogle Scholar
  47. Wilkinson P, Mitchell JG, Cattermole PJ, Downie C (1986) Volcanic chronology of the Meru-Kilimanjaro region, northern Tanzania. J Geol Soc Lond 143:601–605CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Delcamp
    • 1
  • M. Kervyn
    • 1
  • M. Benbakkar
    • 2
  • S. Kwelwa
    • 3
  • D. Peter
    • 4
  1. 1.Department of GeographyVrije Universiteit BrusselBrussel,Belgium
  2. 2.Laboratoire Magmas et VolcansClermont-FerrandFrance
  3. 3.Geita Gold MineBubadaTanzania
  4. 4.University of DodomaDodomaTanzania

Personalised recommendations