, Volume 14, Issue 3, pp 995–1008 | Cite as

Definition and performance of a threshold-based regional early warning model for rainfall-induced landslides

  • Luca Piciullo
  • Stefano Luigi GarianoEmail author
  • Massimo Melillo
  • Maria Teresa Brunetti
  • Silvia Peruccacci
  • Fausto Guzzetti
  • Michele Calvello
Original Paper


A process chain for the definition and the performance assessment of an operational regional warning model for rainfall-induced landslides, based on rainfall thresholds, is proposed and tested in a landslide-prone area in the Campania region, southern Italy. A database of 96 shallow landslides triggered by rainfall in the period 2003–2010 and rainfall data gathered from 58 rain gauges are used. First, a set of rainfall threshold equations are defined applying a well-known frequentist method to all the reconstructed rainfall conditions responsible for the documented landslides in the area of analysis. Several thresholds at different exceedance probabilities (percentiles) are evaluated, and nine different percentile combinations are selected for the activation of three warning levels. Subsequently, for each combination, the issuing of warning levels is computed by comparing, over time, the measured rainfall with the pre-defined warning level thresholds. Finally, the optimal percentile combination to be employed in the regional early warning system, i.e. the one providing the best model performance in terms of success and error indicators, is selected employing the “event, duration matrix, performance” (EDuMaP) method.


Early warning system Shallow landslide Rainfall threshold EDuMaP method Campania 



This work was financially supported by the PhD programme of the Civil Engineering Department of the University of Salerno, for LP, and by a grant from the Italian National Department for Civil Protection, for SLG and MM. G. Iovine and O. Terranova (CNR IRPI), and G. Pecoraro (University of Salerno) contributed to find information on landslide occurrences. We are grateful to the Regional Functional Centre of Civil Protection of Campania for providing rainfall data and to the fire brigades of Avellino, Benevento, Caserta, Napoli and Salerno for providing information on landslide occurrences. We thank the two anonymous reviewers for their criticisms and comments that have helped us to improve the paper.


  1. Alfieri L, Salamon P, Pappenberger F, Wetterhalll F, Thielen J (2012) Operational early warning systems for water-related hazards in Europe. Environ Sci Pol 15(1):35–49. doi: 10.1016/j.envsci.2012.01.008 CrossRefGoogle Scholar
  2. Blikra LH (2008) The Åknes rockslide: monitoring, threshold values and early-warning. In: Chen Z et al (eds) Landslides and engineered slopes, edited by: Taylor & Francis Group, London, pp 1089–1094. doi: 10.1201/9780203885284-c143
  3. Brunetti MT, Peruccacci S, Rossi M, Luciani S, Valigi D, Guzzetti F (2010) Rainfall thresholds for the possible occurrence of landslides in Italy. Nat Hazards Earth Syst Sci 10:447–458. doi: 10.5194/nhess-10-447-2010 CrossRefGoogle Scholar
  4. Calcaterra D, Parise M, Palma B (2003) Combining historical and geological data for the assessment of the landslide hazard: a case study from Campania, Italy. Nat Hazards Earth Syst Sci 3(1/2):3–16. doi: 10.5194/nhess-3-3-2003 CrossRefGoogle Scholar
  5. Calvello M, Piciullo L (2016) Assessing the performance of regional landslide early warning models: the EDuMaP method. Nat Hazards Earth Syst Sci 16:103–122. doi: 10.5194/nhess-16-103-2016 CrossRefGoogle Scholar
  6. Calvello M, d’Orsi RN, Piciullo L, Paes NM, Magalhaes MA, Coelho R, Lacerda WA (2015a) The community-based alert and alarm system for rainfall induced landslides in Rio de Janeiro, Brazil. In: Engineering geology for society and territory “landslide processes”, Proceedings of the XII Int. IAEG Congress, Turin, Italy 2:653–657. doi: 10.1007/978-3-319-09057-3_109
  7. Calvello M, d’Orsi RN, Piciullo L, Paes N, Magalhaes MA, Lacerda WA (2015b) The Rio de Janeiro early warning system for rainfall-induced landslides: analysis of performance for the years 2010–2013. Int J Disast Risk Reduc 12:3–15. doi: 10.1016/j.ijdrr.2014.10.005 CrossRefGoogle Scholar
  8. Capparelli G, Tiranti D (2010) Application of the MoniFLaIR early warning system for rainfall-induced landslides in Piedmont region (Italy). Landslides 7(4):401–410Google Scholar
  9. Cascini L (2004) The flowslides of May 1998 in the Campania region, Italy: the scientific emergency management. Ital Geotech J 2:11–44 ISSN:0557-1405Google Scholar
  10. Cascini L, Cuomo S, Guida D (2008) Typical source areas of May 1998 flow-like mass movements in the Campania region, Southern Italy. Eng Geol 96:107–125. doi: 10.1016/j.enggeo.2007.10.003 CrossRefGoogle Scholar
  11. Di Crescenzo G, Santo A (2005) Debris slides-rapid earth flows in the carbonate massifs of the Campania region (Southern Italy): morphological and morphometric data for evaluating triggering susceptibility. Geomorphology 66(1–4):255–276. doi: 10.1016/j.geomorph.2004.09.015 CrossRefGoogle Scholar
  12. DPGR n 299 del 30/06/2005, Decreto del Presidente della Giunta Regionale della Campania: Il Sistema di Allertamento Regionale per il rischio Idrogeologico e Idraulico ai fini di protezione civile, Bollettino ufficiale della regione Campania, n. speciale 01/08/2005, Campania, Italy.Google Scholar
  13. Fawcett T (2006) An introduction to ROC analysis. Pattern Recogn Lett 27:861–874. doi: 10.1016/j.patrec.2005.10.010 CrossRefGoogle Scholar
  14. Gariano SL, Iovine G, Brunetti MT, Peruccacci S, Luciani S, Bartolini D, Palladino MR, Vessia G, Viero A, Vennari C, Antronico L, Deganutti AM, Luino F, Parise M, Terranova O, Guzzetti F (2012) Populating a catalogue of rainfall events that triggered shallow landslides in Italy. Rend Online Soc Geol It 21:396–398 ISSN 2035-8008Google Scholar
  15. Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova OG, Vennari C, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665. doi: 10.1007/s11069-014-1129-0 CrossRefGoogle Scholar
  16. Giannecchini R, Galanti Y, D’Amato Avanzi G (2012) Critical rainfall thresholds for triggering shallow landslides in the Serchio River Valley (Tuscany, Italy. Nat Hazards Earth Syst Sci 12:829–842. doi: 10.5194/nhess-12-829-2012 CrossRefGoogle Scholar
  17. Greco R, Giorgio M, Capparelli G, Versace P (2013) Early warning of rainfall-induced landslides based on empirical mobility function predictor. Eng Geol 153:68–79. doi: 10.1016/j.enggeo.2012.11.009 CrossRefGoogle Scholar
  18. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98:239–267. doi: 10.1007/s00703-007-0262-7 CrossRefGoogle Scholar
  19. Hanssen AW, Kuipers WJA (1965) On the relationship between the frequency of rain and various meteorological parameters. Koninklijk Nederlands Meteorologisch Institut Meded Verhand 81:2–15Google Scholar
  20. Hungr O, Leroueil S, Picarelli L (2014) The Varnes classification of landslide types, an update. Landslides 11(2):167–194. doi: 10.1007/s10346-013-0436-y CrossRefGoogle Scholar
  21. International Centre of Geohazards: Guidelines for landslide monitoring and early warning systems in Europe—design and required technology (2012) In: Project SafeLand “Living with landslide risk in Europe: assessment, effects of global change, and risk management strategies”, D4.8, (last access: April 2015)
  22. Intrieri E, Gigli G, Mugnai F, Fanti R, Casagli N (2012) Design and implementation of a landslide early warning system. Eng Geol 147/148:124–136. doi: 10.1016/j.enggeo.2012.07.017 CrossRefGoogle Scholar
  23. Intrieri E, Gigli G, Casagli N, Nadim F (2013) Brief communication “landslide early warning system: toolbox and general concepts. Nat Hazards Earth Syst Sci 13:85–90. doi: 10.5194/nhess-13-85-2013 CrossRefGoogle Scholar
  24. Iovine G, Lollino P, Gariano SL, Terranova O (2010) Coupling sensitivity limit equilibrium analyses and real-time monitoring to refine a landslide surveillance system in Calabria (southern Italy. Nat Hazards Earth Syst Sci 10:2341–2354. doi: 10.5194/nhess-10-2341-2010 CrossRefGoogle Scholar
  25. Lagomarsino D, Segoni S, Rosi A, Rossi G, Battistini A, Catani F, Casagli N (2015) Quantitative comparison between two different methodologies to define rainfall thresholds for landslide forecasting. Nat Hazards Earth Syst Sci 15:2413–2423. doi: 10.5194/nhess-15-2413-2015 CrossRefGoogle Scholar
  26. Lollino G, Arattano M, Cuccureddu N (2002) The use of the automatic inclinometric system for landslide early warning: the case of Cabella Ligure (North-Western Italy. Phys Chem Earth 27:1545–1550. doi: 10.1016/S1474-7065(02)00175-4 CrossRefGoogle Scholar
  27. Longobardi A, Buttafuoco G, Caloiero T, Coscarelli R (2016) Spatial and temporal distribution of precipitation in a Mediterranean area (southern Italy. Environ Earth Sci 75(189). doi: 10.1007/s12665-015-5045-8
  28. Manconi A, Giordan D (2015) Landslide early warning based on failure forecast models: the example of the Mt. de la Saxe rockslide, northern Italy. Nat Hazards Earth Syst Sci 15(7):1639–1644. doi: 10.5194/nhess-15-1639-2015 CrossRefGoogle Scholar
  29. Martelloni G, Segoni S, Fanti R, Catani F (2012) Rainfall thresholds for the forecasting of landslide occurrence at regional scale. Landslides 9(485–495). doi: 10.1007/s10346-011-0308-2
  30. Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2015) An algorithm for the objective reconstruction of rainfall events responsible for landslides. Landslides 12(2):311–320. doi: 10.1007/s10346-014-0471-3 CrossRefGoogle Scholar
  31. Melillo M, Brunetti MT, Peruccacci S, Gariano SL, Guzzetti F (2016) Rainfall thresholds for the possible landslide occurrence in Sicily (Southern Italy) based on the automatic reconstruction of rainfall events. Landslides 13(1):165–172. doi: 10.1007/s10346-015-0630-1 CrossRefGoogle Scholar
  32. Michoud C, Bazin S, Blikra LH, Derron M-H, Jaboyedoff M (2013) Experiences from site-specific landslide early warning systems. Nat Hazards Earth Syst Sci 13(2659–2673). doi: 10.5194/nhess-13-2659-2013
  33. Napolitano E, Fusco F, Baum RL, Godt JW, De Vita P (2015) Effect of antecedent-hydrological conditions on rainfall triggering of debris flows in ash-fall pyroclastic mantled slopes of Campania (southern Italy). Landslides. doi: 10.1007/s10346-015-0647-5 Google Scholar
  34. Peres DJ, Cancelliere A (2014) Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach. Hydrol Earth Syst Sci 18:4913–4931. doi: 10.5194/hess-18-4913-2014 CrossRefGoogle Scholar
  35. Peruccacci S, Brunetti MT, Luciani S, Vennari C, Guzzetti F (2012) Lithological and seasonal control of rainfall thresholds for the possible initiation of landslides in central Italy. Geomorphology 139-140:79–90. doi: 10.1016/j.geomorph.2011.10.005 CrossRefGoogle Scholar
  36. Piciullo L, Siano I, Calvello M (2016) Calibration of rainfall thresholds for landslide early warning purposes: applying the EDuMaP method to the system deployed in Campania region (Italy). In: Proceedings of the International Symposium on Landslides 2016-Landslides and Engineered Slopes. Experience, Theory and Practice. Napoli, Italy, 3:1621–1629. ISBN 978–1–138-02988-0Google Scholar
  37. Rosi A, Lagomarsino D, Rossi G, Segoni S, Battistini A, Casagli N (2015) Updating EWS rainfall thresholds for the triggering of landslides. Nat Hazards 78:297–308. doi: 10.1007/s11069-015-1717-7 CrossRefGoogle Scholar
  38. Rosi A, Segoni S, Catani F, Casagli N (2012) Statistical and environmental analyses for the definition of a regional rainfall threshold system for landslide triggering in Tuscany (Italy). J of Geogr Sci 22(4):617–629Google Scholar
  39. Rossi M, Peruccacci S, Brunetti MT, Marchesini I, Luciani S, Ardizzone F, Balducci V, Bianchi C, Cardinali M, Fiorucci F, Mondini AC, Reichenbach P, Salvati P, Santangelo M, Bartolini D, Gariano SL, Palladino M, Vessia G, Viero A, Antronico L, Borselli L, Deganutti AM, Iovine G, Luino F, Parise M, Polemio M, Guzzetti F (2012) SANF: national warning system for rainfall-induced landslides in Italy. In: Eberhardt E, Froese C, Turner AK, Leroueil S (eds) Landslides and engineered slopes: protecting society through improved understanding. Taylor & Francis Group, London, pp. 1895–1899 ISBN 978-0-415-62123-6Google Scholar
  40. Sättele M, Bründla M, Straubb D (2015) Reliability and effectiveness of early warning systems for natural hazards: concept and application to debris flow warning. Rel Eng Syst Safety 142:192–202. doi: 10.1016/j.ress.2015.05.003 CrossRefGoogle Scholar
  41. Sättele M, Bründl M, Straub D (2016) Quantifying the effectiveness of early warning systems for natural hazards. Nat Hazards Earth Syst Sci 16:149–166. doi: 10.5194/nhess-16-149-2016 CrossRefGoogle Scholar
  42. Segoni S, Rosi A, Rossi G, Catani F, Casagni N (2014) Analysing the relationship between rainfalls and landslides to define a mosaic of triggering thresholds for regional scale warning systems. Nat Hazards Earth Syst Sci 14:2637–2648. doi: 10.5194/nhess-14-2637-2014 CrossRefGoogle Scholar
  43. Segoni S, Battistini A, Rossi G, Rosi A, Lagomarsino D, Catani F, Moretti S, Casagli N (2015) Technical note: an operational landslide early warning system at regional scale based on space–time-variable rainfall thresholds. Nat Hazards Earth Syst Sci 15:853–861. doi: 10.5194/nhess-15-853-2015 CrossRefGoogle Scholar
  44. Stähli M, Sättele M, Huggel C, McArdell BW, Lehmann P, Van Herwijnen A, Berne A, Schleiss M, Ferrari A, Kos A, Or D, Springman SM (2015) Monitoring and prediction in early warning systems for rapid mass movements. Nat Hazards Earth Syst Sci 15:905–917. doi: 10.5194/nhess-15-905-2015 CrossRefGoogle Scholar
  45. Staley DM, Kean JW, Cannon SH, Schmidt KM, Laber JL (2013) Objective definition of rainfall intensity–duration thresholds for the initiation of post-fire debris flows in southern California. Landslides 10:547–562. doi: 10.1007/s10346-012-0341-9 CrossRefGoogle Scholar
  46. Terranova OG, Gariano SL, Iaquinta P, Iovine G (2015) GASAKe: forecasting landslide activations by a genetic-algorithms-based hydrological model. Geosci Model Develop 8:1955–1978. doi: 10.5194/gmd-8-1955-2015 CrossRefGoogle Scholar
  47. Thiebes B, Glade T, Bell R (2012) Landslide analysis and integrative early warning-local and regional case studies. In: Eberhardt E (ed) Landslides and engineered slopes: protecting society through improved understanding. Taylor & Francis Group, London, pp. 1915–1921Google Scholar
  48. Thiebes B, Bell R, Glade T, Jäger S, Mayer J, Anderson M, Holcombe L (2013) Integration of a limit-equilibrium model into a landslide early warning system. Landslides 11:859–875. doi: 10.1007/s10346-013-0416-2 CrossRefGoogle Scholar
  49. Vennari C, Gariano SL, Antronico L, Brunetti MT, Iovine G, Peruccacci S, Terranova O, Guzzetti F (2014) Rainfall thresholds for shallow landslide occurrence in Calabria, southern Italy. Nat Hazards Earth Syst Sci 14:317–330. doi: 10.5194/nhess-14-317-2014 CrossRefGoogle Scholar
  50. Vennari C, Parise M, Santangelo N, Santo A (2016) First evaluation of the damage related to alluvial events in torrential catchments of Campania (southern Italy), based on a historical database. Nat Hazards Earth Syst Sci Discuss. doi: 10.5194/nhess-2015-355 Google Scholar
  51. Wilks DS (1995) Statistical methods in the atmospheric sciences. Academic Press, USA 467 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of Civil EngineeringUniversity of SalernoFiscianoItaly
  2. 2.CNR IRPIPerugiaItaly
  3. 3.Department of Physics and GeologyUniversity of PerugiaPerugiaItaly

Personalised recommendations