, Volume 13, Issue 6, pp 1461–1477 | Cite as

Landslides in moraines as triggers of glacial lake outburst floods: example from Palcacocha Lake (Cordillera Blanca, Peru)

  • J. KlimešEmail author
  • J. Novotný
  • I. Novotná
  • B. Jordán de Urries
  • V. Vilímek
  • A. Emmer
  • T. Strozzi
  • M. Kusák
  • A. Cochachin Rapre
  • F. Hartvich
  • H. Frey
Original Paper


Studies focusing on moraine deposits which slide into glacial lakes are scarce, even though they can trigger impact waves responsible for generating glacial lake outburst floods. We focused on landslides in lateral moraines as possible triggers. Detailed geomorphological, geophysical, and satellite radar interferometric investigations of the Palcacocha Lake moraine (Cordillera Blanca, Peru) together with laboratory tests on samples from the site provided data for slope stability calculations using GeoSlope software and hydrodynamic impact wave modeling using the Iber code. We identified landslides that could affect Palcacocha Lake and calculated their stability (factor of safety) under specified conditions, including variable water saturation and earthquake effects. Calculations showed that the moraine slopes are close to the threshold value (Fs = 1) for stability and are especially sensitive to water saturation. The height of impact waves triggered by a landslide in 2003 and the potential wave heights from newly identified, possibly active landslides were calculated, based on landslide volume estimates, detailed lake bathymetry, and basin topography. Results show that potential future landslide-triggered waves could have similar properties to the 2003 impact wave. Evidence gathered in this study suggests that glacial lake outburst floods triggered by landslides from moraines, however, would be probably smaller than floods resulting from other types of slope processes (e.g., ice/rock avalanches) if dam breach is not taken into account. This assumption has to be critically evaluated against site-specific conditions at a given lake and any possible environmental factors, such as climate change or earthquake that may mobilize larger volumes of moraine material.


Landslides Moraines Glacial lakes Slope stability calculation Glacial lake outburst floods Impact wave models Cordillera Blanca 



The authors wish to acknowledge the financial support provided by the Czech Science Foundation (Grant No. P209/11/1000), Grant Agency of Charles University (GAUK project no. 70 413; GAUK project no. 730 216), the European Space Agency (S:GLA:MO project), and the Swiss Agency for Development and Cooperation (SDC) (Proyecto Glaciares). This work was carried out thanks to the support of the long-term conceptual development research organisation RVO: 67985891. ERS and ENVISAT SAR data courtesy of C1F.6504, © ESA. ALOS PALSAR © JAXA. TERRASAR-X data courtesy HYD0562, © DLR. We thank John M. Reynolds for a very detailed and helpful review as well as Matt Rowberry and Christian Huggel for their valuable comments.

Supplementary material

10346_2016_724_MOESM1_ESM.pdf (844 kb)
ESM 1 (PDF 844 kb)


  1. Arendt A, Bliss A, Bolch T, Cogley JG, Gardner AS, Hagen JO, Hock R, Huss M, Kaser G, Kienholz C, Pfeffer WT, Moholdt G, Paul F, Radić V, Andreassen L, Bajracharya S, Barrand N, Beedle M, Berthier E, Bhambri R, Brown I, Burgess E, Burgess D, Cawkwell F, Chinn T, Copland L, Davies B, De Angelis H, Dolgova E, Filbert K, Forester R, Fountain A, Frey H, Giffen B, Glasser N, Gurney S, Hagg W, Hall D, Haritashya UK, Hartmann G, Helm C, Herreid S, Howat I, Kapustin G, Khromova T, König M, Kohler J, Kriegel D, Kutuzov S, Lavrentiev I, LeBris R, Lund J, Manley W, Mayer C, Miles ES, Li X, Menounos B, Mercer A, Mölg N, Mool P, Nosenko G, Negrete A, Nuth C, Pettersson R, Racoviteanu A, Ranzi R, Rastner P, Rau F, Raup B, Rich J, Rott H, Schneider C, Seliverstov Y, Sharp M, Sigurðsson O, Stokes C, Wheate R, Winsvold S, Wolken G, Wyatt F, Zheltyhina N (2014) Randolph Glacier Inventory—a dataset of global glacier outlines: version 4.0. Global Land Ice Measurements from Space, Boulder Colorado, Digital MediaGoogle Scholar
  2. Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Probl 14:R1-R54. doi: 10.1088/0266-5611/14/4/001 CrossRefGoogle Scholar
  3. Barboux C, Delaloye R, Lambiel C (2014) Inventorying slope movements in an Alpine environment using DinSAR. Earth Surf Process Landf 39:2087–2099. doi: 10.1002/esp.3603 CrossRefGoogle Scholar
  4. Bareither CA, Edil TB, Mickelson DM (2008) Geological and physical factors affecting the friction angle of compacted sands. J Geotech Geoenvironmental Eng 134:1476–1489CrossRefGoogle Scholar
  5. Beló M, D’Agata C, Smiraglia C, Plefini M (2006) Ice core moraine collapse at Froni Glacier (Italian Alps): a case of tourist risk. Geophys Res Abstr 8 (08361)Google Scholar
  6. Bolton MD (1986) The strength and dilatancy of sands. Géotechnique 36:65–78CrossRefGoogle Scholar
  7. Carey M (2010) In the shadow of melting glaciers: climate change and Andean society. Oxford University Press, p 288Google Scholar
  8. Carey M (2005) Living and dying with glaciers: people’s historical vulnerability to avalanches 524 and outburst floods in Peru. Global Planet Change 47(2–4):122–134CrossRefGoogle Scholar
  9. Cigna F, Bianchini S, Casagli N (2012) How to assess landslide activity and intensity with persistent scatterer interferometry (PSI): the PSI-based matrix approach. Landslides. doi: 10.1007/s10346-012-0335-7 Google Scholar
  10. Costa JE, Schuster RL (1988) The formation and failure of natural dams. Geological Society of America Bulletin 100(7):1054–1068. doi: 10.1130/0016-7606(1988)100<1054:TFAFON>2.3.CO;2 CrossRefGoogle Scholar
  11. Crosetto M, Monserrat O, Bremmer C, Hanssen R, Capes R, Marsh S (2009) Ground motion monitoring using SAR interferometry: quality assessment. Eur Geol 26:12–15Google Scholar
  12. Emmer A, Vilímek V, Klimeš J, Cochachin A (2014) Glacier retreat, lakes development and associated natural hazards in Cordillera Blanca, Peru. In: Shan W, Guo Y, Wang F, Marui H, Strom A (eds) Landslides in cold regions in the context of climate change, Springer, pp 231–252Google Scholar
  13. Emmer A, Cochachin A (2013) The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera and Himalayas. AUC Geograph 48:5–15CrossRefGoogle Scholar
  14. Emmer A, Vilímek V (2014) New method for assessing the susceptibility of glacial lakes to the outburst floods in the Cordillera Blanca, Peru. Hydrol Earth Syst Sc 18:3461–3479. doi: 10.5194/hess-18-3461-2014 CrossRefGoogle Scholar
  15. Emmer A, Loarte EC, Klimeš J, Vilímek V (2015) Recent evolution and degradation of the bent Jatunraju glacier (Cordillera Blanca, Peru). Geomorphology 228:345–355CrossRefGoogle Scholar
  16. Emmer A, Vilímek V, Zapata ML (2016) Hazard mitigation of glacial lake outburst floods in the Cordillera Blanca (Peru): the effectiveness of remedial works. J Flood Risk Manage, not yet assigned to an issue. doi: 10.1111/jfr3.12241 Google Scholar
  17. Engel Z, Česák J, Rios Escobar V (2011) Rainfall-related debris flows in Carhuacocha Valley, Cordillera Huayhuash, Peru. Landslides 8:269–278CrossRefGoogle Scholar
  18. Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128CrossRefGoogle Scholar
  19. Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217CrossRefGoogle Scholar
  20. Fischer T, Lentschke J, Küfmann C, Haas F, Baume O, Becht M, Schröder H (2013) High-mountainous permafrost under continental-climatic conditions: actual results of different mapping methods and an empirical-statistical modeling approach for the Northern Tien Shan. Geoph Res Abs 15:EGU2013–13074Google Scholar
  21. Frey H, García-Hernández J, Huggel C, Schneider D, Rohrer M, Gonzales Alfaro C, Muñoz Asmat R, Price Rios K, Meza Román L, Cochachin Rapre A, Masias Chacon P (2014) An early warning system for lake outburst floods of the Laguna 513, Cordillera Blanca, Peru. In: Proceedings of the International Conference on the Analysis and Management of Changing Risks for Natural Hazards. 18–19 November 2014, Padua, ItalyGoogle Scholar
  22. Giráldez C, Choquevilca W, Fernández F, Frey H, García J, Haeberli W, Huggel C, Ludena S, Rohrer M, Suarez W (2013) Large mass movements related to deglaciation effects in southern Peru (Cusco). Geoph Res Abs 15:EGU2013–8183Google Scholar
  23. Haeberli W, Wegmann M, Vonder Muhll D (1997) Slope stability problems related to glacier shrinkage and permafrost degradation in the Alps. Ecologae Geologicae Helvetiae 90:407–414Google Scholar
  24. Holm K, Bovis M, Jakob M (2004) The landslide response of alpine basins to post-Little Ice Age glacial thinning and retreat in southwestern British Columbia. Geomorphology 57:201–216CrossRefGoogle Scholar
  25. Hölbling D, Füreder P, Antolini F, Cigna F, Casagli N, Lang S (2012) A semi-automated object-based approach for landslide detection validated by persistent scatterer interferometry measures and landslide inventories. Remote Sens 4:1310–1336CrossRefGoogle Scholar
  26. Hubbard B, Heald A, Reynolds JM, Quincey D, Richardson SD, Zapata-Luyo M, Santillan-Portilla N, Hambrey MJ (2005) Impact of a rock avalanche on a moraine-dammed proglacial lake: Laguna Safuna Alta, Cordillera Blanca, Peru. Earth Surf Process Landf 30:1251–1264CrossRefGoogle Scholar
  27. Hugenholtz CH, Moorman BJ, Barlow J, Wainstein PA (2008) Large-scale moraine deformation at the Athabasca Glacier, Jasper National Park, Alberta, Canada. Landslides 5:251–260CrossRefGoogle Scholar
  28. Huggel C, Gruber S, Korup O (2013) Landslide hazards and climate change in high mountains. In: Shroder J, James LA, Harden CP, Clague JJ, Shroder J (eds) Treatise on geomorphology. Academic Press, San Diego, pp 288–301CrossRefGoogle Scholar
  29. Iber (2010) Two-dimensional modeling of free surface shallow water flow, Hydraulic reference manual, Iber v1.0. Accessed 20 January 2014
  30. Idris IM (1985): Earthquake ground motions. In: EERI Course on “Strong ground motion—seismic analysis, Design and code issues,” April 10th 1987, Pasadena, CaliforniaGoogle Scholar
  31. Instituto Nacional de Defensa Civil (2011) Informe de peligro N° 003-12/05/2011/COEN-SINADECI/15:00 horas (Informe N° 01): Peligro por aluvión en el departamento de Ancash, Huaraz-Peru: COEN-SINADECI, INDECI, HuarazGoogle Scholar
  32. Iribarren Anacona P, Mackintosh A, Norton KP (2014) Hazardous processes and events from glacier and permafrost areas: lessons from the Chilean and Argentinean Andes. Earth Surf Process Landf. doi: 10.1002/esp.3524 Google Scholar
  33. Klimeš J, Vilímek V, Vlčko J (2007) Debris flows in the vicinity of the Machu Picchu village, Peru. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Progress in landslide science. Springer, pp 313–314Google Scholar
  34. Klimeš J (2012) Geomorphology and natural hazards of the selected glacial valleys, Cordillera Blanca, Peru. AUC Geograph 47:25–31Google Scholar
  35. Klimeš J, Benešová M, Vilímek V, Bouška P, Rapre AC (2014) The reconstruction of a glacial lake outburst flood using HEC-RAS and its significance for future hazard assessments: an example from Lake 513 in the Cordillera Blanca, Peru. Nat Haz 71:1617–1638CrossRefGoogle Scholar
  36. Lliboutry L, Morales BA, Pautre A, Schneider B (1977) Glaciological problems set by the control of dangerous lakes in Cordillera Blanca, Peru. I. Historical failures of morainic dams, their causes and prevention. J Glaciol 18:239–254Google Scholar
  37. Morgenstern NR, Price VE (1965) The analysis of the stability of general slip surfaces. Géotechnique 15:70–93Google Scholar
  38. Ng AH-M, Ge L, Li X, Abidin HZ, Andreas H, Zhang K (2012) Mapping land subsidence in Jakarta, Indonesia using persistent scatterer interferometry (PSI) technique with ALOS PALSAR. Int J Applied Earth Obser and GeoinformGoogle Scholar
  39. Notti D, García-Davalillo JC, Herrera G, Cooksley G (2010) Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: Upper Tena Valley case study. Nat Hazards Earth Syst Sci 10:1865–1875CrossRefGoogle Scholar
  40. Novotný J, Klimeš J (2014) Grain size distribution of soils within the Cordillera Blanca, Peru: an indicator of basic mechanical properties for slope stability evaluation. J Mt Sci 11:563–577CrossRefGoogle Scholar
  41. Ojeda N (1974) Consolidacion laguna Palcacocha (in Spanish). Electroperu, HuarásGoogle Scholar
  42. Oppenheim V (1946) Sobre las lagunas de Huaraz (in Spanish). Boletin Sociedad Geologica Peru., pp 68–80Google Scholar
  43. Oppikofer T, Jaboyedoff M, Keusen H-R (2008) Collapse at the eastern Eiger flank in the Swiss Alps. Nature Geoscience 1:531–535. doi: 10.1038/ngeo258 CrossRefGoogle Scholar
  44. Panizzo A, De Girolamo P, Petaccia A (2005) Forecasting impulse waves generated by subaerial landslides J Geophys Res Ocean 110:23. doi: 10.1029/2004jc002778
  45. Portocarrero CAR (2014) The glacial lake handbook—reducing risk from dangerous glacial lakes in the Cordillera Blanca, Peru. USAID technical report, p 80Google Scholar
  46. Rabatel A, Francou B, Soruco A, Gomez J, C’aceres B, Ceballos JL, Basantes R, Vuille M, Sicart JE, Huggel C, Scheel M, Lejeune Y, Arnaud Y, Collet M, Condom T, Consoli G, Favier V, Jomelli V, Galarraga R, Ginot P, Maisincho L, Mendoza J, Menegoz M, Ramirez E, Ribstein P, Suarez W, Villacis M, Wagnon P (2013) Current state of glaciers in the tropical Andes: a multi-century perspective on glacier evolution and climate change. The Cryosphere 7:81–102CrossRefGoogle Scholar
  47. Reynolds JM (2011) An introduction to applied and environmental geophysics. Wiley Ltd., p 712Google Scholar
  48. Reynolds JM (2003) Development of glacial hazard and risk minimisation protocols in rural environments. Methods of glacial hazard assessment and management in the Cordillera Blanca Peru. Reynolds Geo-Sciences Ltd., Flintshire, p 72Google Scholar
  49. Richardson SD, Reynolds JM (2000) Degradation of ice-cored moraine dams: implications for hazard development. IAHS Publications 264:187–197Google Scholar
  50. Righini G, Pancioli V, Casagli N (2011) Updating landslide inventory maps using Persistent Scatterer Interferometry (PSI). Int J Remote Sens 33:1–29Google Scholar
  51. Rosen P, Hensely S, Joughin I, Li F, Madsen S, Rodriguez E (2000) Goldstein R (2000) Synthetic aperture radar interferometry. Proc IEEE 88:333–382CrossRefGoogle Scholar
  52. Schneider-Muntau B, Zangerl C (2005) Numerical modelling of a slowly creeping landslide in crystalline rock—a case study. In: Konečný P (ed) Impact of human activity on the geological environment. Taylor & Francis Group plc, London, pp 535–540Google Scholar
  53. Schneider D, Huggel C, Cochachin A, Guillén S, García J (2014) Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv Geosci 35:145–155CrossRefGoogle Scholar
  54. Simeoni L, Tarantino A, Mongiovi L (2003) Effects of unsaturation on the stability of a moraine slope. In: Schanz T (ed) Unsaturated soils: experimental studies, Proceedings of the International Conference, From Experimental Evidence towards Numerical Modeling of Unsaturated Soils, Weimar, Germany., pp 497–508Google Scholar
  55. Somos-Valenzuela M, Chisolm RE, McKinney DC, Rivas D (2014) Hazard mapping of a potential glacial lake outburst flood in Huaraz, Peru. Center for research in water resources, Online Report 14–01. Accessed 21 November 2014
  56. Springman SM, Jommi C, Teysseire P (2003) Instabilities on moraine slopes induced by loss of suction: a case history. Géotechnique 53:3–10CrossRefGoogle Scholar
  57. Strozzi T, Wegmüller U, Tosi L, Bitelli G, Spreckels V (2001) Land subsidence monitoring with differential SAR interferometry. Photogramm Eng Remote Sens 67:1261–1270Google Scholar
  58. Strozzi T, Farina P, Corsini A, Ambrosi C, Thuring M, Zilger J, Wiesmann A, Wegmüller U, Werner C (2005) Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2:193–201CrossRefGoogle Scholar
  59. Strozzi T, Ambrosi C, Raetzo H (2013) Interpretation of aerial photographs and satellite SAR interferometry for the inventory of landslides. Remote Sens 5:2554–2570. doi: 10.3390/rs5052554 CrossRefGoogle Scholar
  60. Sun Q, Zhang L, Ding Y, Hu J, Liang H (2015) Investigation of slow-moving landslides from ALOS/PALSAR images with TCPInSAR: a case study of Oso, USA. Remote Sensing 7:72–88CrossRefGoogle Scholar
  61. Tamburini A, Del Conte S, Larini G, Lopardo L, Malaguti C, Vescovi P (2011) Application of SqueeSARTM to the characterization of deep seated gravitational slope deformations: the Berceto case study (Parma, Italy). In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice, vol 2. Springer, New York, pp 437–444, Early Warning, Instrumentation and MonitoringGoogle Scholar
  62. Viero A, Teza G, Massironi M, Jaboyedoff M, Galgaro A (2010) Laser scanning-based recognition of rotational movements on a deep seated gravitational instability: the Cinque Torri case (North-Eastern Italian Alps). Geomorphology 122:191–204. doi: 10.1016/j.geomorph.2010.06.014 CrossRefGoogle Scholar
  63. Vilímek V, Zapata ML, Klimeš J, Patzelt Z, Santillán N (2005) Influence of glacial retreat on natural hazards of the Palcacocha Lake area, Peru. Landslides 2:107–115CrossRefGoogle Scholar
  64. Vilímek V, Klimeš J, Červená L (2015) Glacier-related landforms and glacial lakes in Huascarán National Park, Peru. J Maps doi. doi: 10.1080/17445647.2014.1000985 Google Scholar
  65. Wegmüller U, Werner C, Strozzi T, Wiesmann A (2003) Multi-temporal interferometric point target analysis. In: Proceedings of the Multi-Temp Conference, Ispra, Italy, 16–18 July 2003Google Scholar
  66. Werner C, Wegmüller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. In Proceedings of IGARSS, Toulouse, France, 21–25 July 2003Google Scholar
  67. Westoby MJ, Glasser NF, Brasington J, Hambrey MJ, Quincey DJ, Reynolds JM (2014) Modelling outburst floods from moraine-dammed glacial lakes. Earth-Sci Rev 134:137–159CrossRefGoogle Scholar
  68. Worni R, Huggel C, Clague JJ, Schaub Y, Stoffel M (2014) Coupling glacial lake impact, dam breach, and flood processes: a modeling perspective. Geomorphology 224:161–176CrossRefGoogle Scholar
  69. Yamada T (1998) Glacier lake and its outburst flood in the Nepal Himalaya., Japanese Society of Ice and SnowGoogle Scholar
  70. Zapata ML (2002) La dinamica glaciar en lagunas de la Cordillera Blanca (in Spanish). Acta Montana 19:37–60Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • J. Klimeš
    • 1
    Email author
  • J. Novotný
    • 2
    • 3
  • I. Novotná
    • 2
  • B. Jordán de Urries
    • 4
  • V. Vilímek
    • 5
  • A. Emmer
    • 5
    • 6
  • T. Strozzi
    • 7
  • M. Kusák
    • 1
    • 5
  • A. Cochachin Rapre
    • 8
  • F. Hartvich
    • 1
  • H. Frey
    • 9
  1. 1.Department of Engineering Geology, Institute of Rock Structure and MechanicsThe Academy of Sciences of the Czech RepublicPrague 8Czech Republic
  2. 2.ARCADIS CZ a.s.Prague 5Czech Republic
  3. 3.Department of Hydrogeology, Engineering Geology and Applied Geophysics, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  4. 4.Department of Materials and Fluids Science and TechnologyUniversity of ZaragozaZaragozaSpain
  5. 5.Department of Physical Geography and Geoecology, Faculty of ScienceCharles University in PraguePrague 2Czech Republic
  6. 6.Department of the Human Dimensions of Global Change, Global Change Research InstituteAcademy of Sciences of the Czech RepublicBrnoCzech Republic
  7. 7.Gamma Remote SensingGümligenSwitzerland
  8. 8.Autoridad Nacional del Agua, Unidad de Glaciología y Recursos HídricosHuarázPeru
  9. 9.Department of GeographyUniversity of ZurichZurichSwitzerland

Personalised recommendations