Advertisement

Landslides

, Volume 14, Issue 2, pp 743–754 | Cite as

The combined use of PSInSAR and UAV photogrammetry techniques for the analysis of the kinematics of a coastal landslide affecting an urban area (SE Spain)

  • Rosa María Mateos
  • Jose M. Azañón
  • Francisco J. Roldán
  • Davide Notti
  • Vicente Pérez-Peña
  • Jorge P. Galve
  • Jose Luis Pérez-García
  • Carlos M. Colomo
  • Jose M. Gómez-López
  • Oriol Montserrat
  • Nùria Devantèry
  • Francisco Lamas-Fernández
  • Francisca Fernández-Chacón
Pictorial Essay

Abstract

In the present work, the case of the Cármenes del Mar resort (Granada, Spain) is shown. It can be considered one of the most extreme examples on the Mediterranean coast of severe pathologies associated with urban development on coastal landslides. The resort, with 416 dwellings, was partially built on a deep-seated landslide which affects a soft formation composed of dark graphite schists. In November 2015, the City Council officially declared a state of emergency in the resort and 24 dwellings have already been evacuated. We have used two remote sensing techniques to monitor the landslide with the aim of identifying and measuring a wide range of displacements rates (from mm/year to m/year): (1) PSInSAR, exploiting 25 ENVISAT SAR images acquired from May 2003 to December 2009, and (2) photogrammetry, considering the output from two Unmanned Aerial Vehicle (UAV) flights made in June 2015 and January 2016 and the outdated photos from a conventional flight in 2008. The relationship between the geology of the site, data from PS deformation measurements, building displacements, rainfall and damage observed and their temporal occurrence allows a better understanding of the landslide kinematics and both the spatial and temporal evolution of the instability. Results indicate building displacements of up to 1.92 m in 8 years, a clear lithological control in the spatial distribution of damage and a close relationship between the most damaging events and water recharge episodes (rainy events and leaks from swimming pools and the water supply network). This work emphasises the need to incorporate geohazards into urban planning, including policies to predict, prepare for and prevent this type of phenomenon.

Keywords

Landslide Urban development Damage PSInSAR UAV photogrammetry Mediterranean coast 

Notes

Acknowledgments

The research leading to these results has received funding from the Spanish National Research Plan under LITHOSURF project Grant Agreement N. CGL2015-67130-C2-1-R. Additionally, this research has been funded by the European Commission, Directorate-General Humanitarian Aid and Civil Protection (ECHO), through the SAFETY project (Ref. ECHO/SUB/2015/718679/Prev02). Dr. Jorge Pedro Galve has received economic support from the Spanish Ministry of Economy and Competitiveness through the Juan de la Cierva Programme.

References

  1. Antronico L, Borelli L, Coscarelli R, Gulla G (2015) Time evolution of landslide damages to buildings: the case study of Lungro (Calabria, southern Italy). Bull Eng Geol Environ 74:47–59CrossRefGoogle Scholar
  2. Azañón JM, Alonso-Chaves FM (1996) Alpine tectono-metamorphic evolution of the Tejeda Unit, an extensionally dismembered Alpujarride Nappe (Western Betics). Comptes rendus de l'Académie des Sciences. Série 2. Sciences de laTerre et des Planètes 322(1):47–54Google Scholar
  3. Azañón JM, Garcia-Dueñas V, Martinez-Martinez JM, Crespo-Blanc A (1994) Alpujarride tectonic sheets in the central Betics and similar eastern allochthonous units (SE Spain). Comptes Rendus de l'Académie des Sciences. Série 2. Sciences de la Terre et des Planètes 318(5):667–674Google Scholar
  4. Bianchini, S., Herrera, G., Mateos, R. M., Notti, D., Garcia, I., Mora, O., & Moretti, S. (2013). Landslide activity maps generation by means of persistent scatterer interferometry. Remote Sensing, 5(12).Google Scholar
  5. Bianchini S, Pratesi F, Nolesini T, Casagli N (2015) Building deformation assessment by means of persistent scatterer interferometry analysis on a landslide-affected area: the Volterra (Italy) case study. Remote Sens 7(4):4678–4701CrossRefGoogle Scholar
  6. Booth-Rea G, Azañón JM, Goffé B, Vidal O, Martínez-Martínez JM (2002) High-pressure, low-temperature metamorphism in Alpujarride units of southeastern Betics (Spain). Compt Rendus Geosci 334(11):857–865CrossRefGoogle Scholar
  7. Bru G, Herrera G, Tomás R, Duro J, De la Vega R, Mula J (2013) Control of deformation of buildings affected by subsidence using persistent scatterer interferometry. Struct Infrastruct Eng 9:188–200Google Scholar
  8. Cascini L, Bonnard C, Corominas J, Jibson R, Montero-Olart J (2005) Landslide hazard and risk zoning for urban planning and development. Landslide risk management. Taylor and Francis, London, pp 199–235Google Scholar
  9. Ciampalini A, Bardi F, Bianchini S, Frodella W, Del Ventisette C, Moretti S, Casagli N (2014) Analysis of building deformation in landslide area using multisensor PSInSAR technique. Int J Appl Earth Obs Geoinf 33:166–180CrossRefGoogle Scholar
  10. Cigna F, Del Ventisette C, Liguori V, Casagli, N (2010) InSAR time-series analysis for management and mitigation of geological risk in urban areas. In Geoscience and Remote Sensing Symposium (IGARSS), 2010 I.E. International, pp. 1924–1927.Google Scholar
  11. Cigna F, Bianchini S, Casagli N (2013) How to assess landslide activity and intensity with Persistent Scatterer Interferometry (PSI): the PSI-based matrix approach. Landslides 10:267–283CrossRefGoogle Scholar
  12. Cooper AH (2008) The classification, recording, databasing and use of information about building damage caused by subsidence and landslides. Q J Eng Geol Hydrogeol 41:409–424CrossRefGoogle Scholar
  13. Crosetto M, Monserrat O, Cuevas M, Crippa B (2011) Spaceborne differential SAR interferometry: data analysis tools for deformation measurement. Remote Sens 3:305–318CrossRefGoogle Scholar
  14. Cruden DM and Varnes DJ (1996) Landslides types and processes. In: Turner A.K., Schuster R.L. (Eds.) Landslides: investigation and mitigation. Transportation Research Board Special Report 247:36–75. National Academy Press, Washington, DC.Google Scholar
  15. Dai F, Feng Y, Hough R (2014) Photogrammetric error sources and impacts on modeling and surveying in construction engineering applications. Vis Eng 2:1–14. doi: 10.1186/2213-7459-2-2 CrossRefGoogle Scholar
  16. Faccini F, Luino F, Sacchini A, Turconi F, De Graff JV (2015) Geohydrological hazards and urban development in the Mediterranean area: an example from Geonoa (Liguria, Italy). Nat Hazards Earth Syst Sci 15:2631–2652CrossRefGoogle Scholar
  17. Ferlisi S, Peduto D, Gulla G, Nicodemo G, Borrelli L, Fornaro G (2015) The use of DInSAR data for the analysis of building damage induced by slow-moving landslides. Engineering geology for society and territory, Vol 2: landslide processes. Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (Editors). 12th International IAEG Congress. Sep 2014. Torino, Italy.Google Scholar
  18. Herrera G, Álvarez Fernández MI, Tomás R, González-Nicieza N, López-Sanchez JM, Álvarez Vigil AE (2012) Forensic analysis of buildings affected by mining subsidence based on differential interferometry (part III). Eng Fail Anal 24:67–76CrossRefGoogle Scholar
  19. Herrera G, Gutiérrez F, García-Davalillo JC, Guerrero J, Notti D, Galve JP, Cooksley G (2013) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena Valley case study (Central Spanish Pyrenees). Remote Sens Environ 128:31–43CrossRefGoogle Scholar
  20. Jimenez JA, Sancho-Garcia A, Bosom E (2012) Storm-induced damages along the Catalan coast (NW Mediterranean) during the period 1958–2008. Geomorphology 143:24–33CrossRefGoogle Scholar
  21. Marek L, Mirijovski J, Tucek P (2015) Monitoring of the shallow landslide using UAV photogrammetry and geodetic measurements. In: Engineering geology for society and territory. Lollino G, Giordan D, Crosta GB, Corominas J, Azzam R, Wasowski J, Sciarra N (Editors). Vol 2: Landslide processes: 113–116. 12th International Conference IAEG Congress, Torino (Italy).Google Scholar
  22. Mateos RM (2007) Natural hazard and land-use planning in Spain. J Eur Fed Geol 23:10–13Google Scholar
  23. Mateos RM, García-Moreno I, Herrera G, Mulas J (2013) Losses caused by recent mass-movements in Majorca (Spain). Landslide science and practice. Margottini C, Canuti P and SassaK (Editors). Volume 7: Social and Economic Impact and Policies. pp. 105–113. Springer.Google Scholar
  24. Niethammer U, Rothmund S, James MR, Travelletti J, Joswig M (2010) UAV-based remote sensing of landslides. Book Series: International archives of the photogrammetry remote sensing and spatial information sciences. Eisenbeiss H, Kunz H, Ingensand H (Editors). Vol 38–1: 161–166. International Conference on Unmanned Aerial Vehicle in Geomatics (UAV-g), Zurich (Switzerland).Google Scholar
  25. Niethammer U, Rothmund S, Schwaderer U, Zeman J, Joswig M (2011) Open source image-processing tools for low-cost UAV based landslide investigations. Book Series: International archives of the photogrammetry remote sensing and spatial information sciences. Mills JP, Barber DM, Miller PE, Newton I (Editors). Vol 38: 496–501. ISPRS- Commission V Mid-Term Symposium on Close Range Image measurement Technique, Newcastle Upon Tyne (UK).Google Scholar
  26. Notti D, Galve JP, Mateos RM, Montserrat O, Lamas-Fernández F, Fernández-Chacón F, Roldán-García FJ, Pérez-Peña V, Crosetto M, Azañón JM (2015) Human-induced coastal landslide reactivation. Monitoring by PSInSAR techniques and urban damage survey (SE Spain). Landslides 12:1007–1014CrossRefGoogle Scholar
  27. Ortega-Espinosa S (2010) Urbanización Los Cármenes del Mar, Cerro Gordo, Almuñécar (Granada). Technical report, 18 p. Internal report unpublished (in Spanish).Google Scholar
  28. Rodríguez-Ortiz JM (2011) Informe complementario del Proyecto de estabilización de laderas en la Urbanización “Cármenes del Mar” (Cerro Gordo, Almuñécar). Technical report, 27 p. Internal report unpublished (in Spanish).Google Scholar
  29. Sanabria MP, Guardiola-Albert C, Tomás R, Herrera G, Prieto A, Sánchez H, Tessitore S (2014) Subsidence activity maps derived from DInSAR data: Orihuela case study. Natural Hazards Earth Sci Syst 14:1341–1360CrossRefGoogle Scholar
  30. Simancas JF, Campos J (1993) Compresión NNW-SSE tardi a postmetamórfica y extensión subordinada en el Complejo Alpujárride (Dominio de Alborán, Orógeno Bético). Revista de la Sociedad Geológica de España 6:23–35Google Scholar
  31. Stumpf A, Malet JO, kerle N, Niethammer U, Rothmund S (2013) Image-based mapping of surface fissures for the investigation of landslide dynamics. Geomorphology 186:12–27CrossRefGoogle Scholar
  32. Torrero L, Seoli L, Molino A, Giordan D, Manconi A, Allasia P, Baldo M (2015) The use of micro-UAV to monitor active landslide scenarios. In: Engineering geology for society and territory. Lollino G, Manconi A, Guzzetti F, Culshaw M, Bobrowsky P, Luino F (Editors). Vol 5: Urban geology, sustainable planning and landscape exploitation: pp. 701–704. 12th International Conference IAEG Congress, Torino (Italy).Google Scholar
  33. Turner D, Lucieer A, de Jong SM (2015) Time series analysis of landslide dynamics using an Unmanned Aerial Vehicle (UAV). Remote Sens 7:1736–1757CrossRefGoogle Scholar
  34. Vorsevi SA (1998) Estudio geotécnico sobre condiciones de cimentación y estabilidad. Proyecto: Los Cármenes del Mar, Cerro Gordo, La Herradura, Almuñécar, Granada. 121 p. Internal report unpublished (in Spanish).Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Rosa María Mateos
    • 1
  • Jose M. Azañón
    • 2
  • Francisco J. Roldán
    • 1
  • Davide Notti
    • 2
  • Vicente Pérez-Peña
    • 2
  • Jorge P. Galve
    • 2
  • Jose Luis Pérez-García
    • 3
  • Carlos M. Colomo
    • 3
  • Jose M. Gómez-López
    • 3
  • Oriol Montserrat
    • 4
  • Nùria Devantèry
    • 4
  • Francisco Lamas-Fernández
    • 5
  • Francisca Fernández-Chacón
    • 2
  1. 1.Geological Survey of Spain (IGME)GranadaSpain
  2. 2.Department of GeodynamicsUniversity of GranadaGranadaSpain
  3. 3.Department of Cartographic Engineering, Geodesy and Photogrammetry of the University of JaénJaénSpain
  4. 4.Geomatics Division of the Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)CastelldefelsSpain
  5. 5.Department of Civil Engineering of the University of GranadaGranadaSpain

Personalised recommendations