Advertisement

Landslides

, Volume 14, Issue 1, pp 155–170 | Cite as

Long-term monitoring of a large deep-seated landslide (La Clapiere, South-East French Alps): initial study

  • Edouard Palis
  • Thomas Lebourg
  • Emmanuel Tric
  • Jean-Philippe Malet
  • Maurin Vidal
Original Paper

Abstract

The large-scale deformation of high mountain slopes finds its origin in many phenomena (inherent parameters, external stresses) with very different time constants (instantaneous to geological scale). Gravitational effect, tectonic forces and water infiltration are generally the principal causes of slope instability. However, it can be very difficult to distinguish which cause is dominant and which are their respective effects. To gain a better understanding of the complex processes taking place during the evolution of an unstable slope and separate the causes responsible of the landslide dynamic, an observational study based on geodetic, meteorological, seismological and electrical data has been performed on the La Clapière rockslide (Southern French Alps). This deep-seated landslide (DSL) is known for many years as one of the largest and fastest rock slide in Europe (60 million m3 of highly weathered metamorphic material, moving at 1 to 3 m year−1). The set-up of the “Observatoire Multidisciplinaire des Instabilités de Versants” (OMIV, http://omiv.osug.fr) in 2011 has allowed the production and availability of an important and original data set over several years of accurate monitoring. Thus, for the first time, the long-term study of geodetic data permitted us to highlight acceleration phases in the general movement of the landslide that affect its dynamic. These modifications are associated with variations of the velocity by a factor 3 to 6. The characterization of the origin of these variations was possible due to the comparison with meteorological, electrical and seismological data. Based on these various signals, we were able to establish correlations and contributions of meteorological water infiltration in the dynamic evolution of the La Clapière slope. We determine several response times to the meteorological stress for seismic endogenous events (mainly rockfalls), the resistivity of the ground (quasi-instantaneous) and the kinematics of the slope (from 2 weeks to 2.5 months). Moreover, our results strongly suggest the existence of rainfall threshold of 3.5 ± 1 mm day−1 from which the number of seismic endogenous events is highly increased.

Keywords

La Clapière Landslide monitoring Multi-parameter analysis Electrical resistivity tomography 

Notes

Acknowledgments

This work is supported by PACA Region, OCA Observatory and INSU OMIV project (Landslides French Observatory).

References

  1. Bernardie S, Desramaut N, Malet J-P, Gourlay M, Granjean G (2014) Prediction of changes in landslide rates induced by rainfall. Landslides. doi: 10.1007/s10346-014-0495-8 Google Scholar
  2. Bièvre G, Jongmans D, Goutaland D, Pathier E, Zumbo V (2015) Geophysical characterization of the lithological control on the kinematic pattern in a large clayey landslide (Avignonet, French Alps). Landslides. doi: 10.1007/s10346-015-0579-0 Google Scholar
  3. Bigot-Cormier F, Poupeau G, Sosson M (2000) Dénudations différentielles du massif cristallin externe alpin de l’Argentera (Sud-Est de la France) relevées par thermochronologie traces de fission (apatites, zircons). C R Acad Sci Paris Sci de la Terre et des planètes Earth Planet Sci 330:363–370Google Scholar
  4. Bigot-Cormier F, Braucher R, Burlès D, Guglielmi Y, Dubar M, Stéphan J-F (2005) Chronological constraints on processes leading to large active landslides. Earth Planet Sci Lett 235:141–150. doi: 10.1016/j.epsl2005.03.012 CrossRefGoogle Scholar
  5. Bigot-Cormier F, Sosson M, Poupeau G, Stéphan J-F, Labrin E (2006) The denudation history of the Argentera Alpine External Crystalline Massif (Western Alps, France-Italy): an overview from the analysis of fission tracks in apatites and zircons. Geodin Acta 19(6):455–473CrossRefGoogle Scholar
  6. Binet S, Jomard H, Lebourg T, Guglielmi Y, Tric E, Bertrand C, Mudry J (2007) Experimental analysis of groundwater and artificial water chemical tracers. Hydrol Process 21:3463–3472. doi: 10.1002/hyp.6579 CrossRefGoogle Scholar
  7. Bogdanoff S (1980) Analyse structurale dans la partie occidentale de l’Arengtera-Mercantour (Alpes Maritimes). Doctoral dissertation, Université Paris Sud-Paris XIGoogle Scholar
  8. Bogdanoff S, Michard A, Mansour M, Poupeau G (2000) Apatite fission track analysis in the Argentera massif: evidence of contrasting denudation rates in the External Crystalline Massifs of the Western Alps. Terra Nov. 12(3):117–125. doi: 10.1046/j.1365-3121.2000.123281.x
  9. Bois T, Bouissou S, Guglielmi Y (2008) Influence of major inherited faults zones on gravitational slope deformation: a two-dimensional physical modelling of the La Clapière area (Southern French Alps). Earth Planet Sci Lett 272:709–719. doi: 10.1016/j.epsl.2008.06.006 CrossRefGoogle Scholar
  10. Bois T, Tric E, Lebourg T (2014) Influence of inherited topography on gravitational slope failure: three-dimensional numerical modelling of the La Clapière slope, Alpes-Maritimes, France. Terra Nov. 26:1–9. doi: 10.1111/ter.12105
  11. Booth AM, Lamb MP, Avouac J-P, Delacourt C (2013) Landslide velocity, thickness, and rheology from remote sensing: La Clapière landslide, France. Geophys Res Lett 40:4299–4304. doi: 10.1002/grl.50828 CrossRefGoogle Scholar
  12. Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geogr Ann 62A(1–2):23–27CrossRefGoogle Scholar
  13. Cappa F, Guglielmi Y, Soukatchoff VM, Mudry J, Bertrand C, Charmoille A (2004) Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemical monitoring: example of the La Clapière landslide (Southern Alps, France). J Hydrol 291:67–90. doi: 10.1016/j.jhydrol.2003.12.013 CrossRefGoogle Scholar
  14. Casson B, Delacourt C, Baratoux D, Allemand P (2003) Seventeen years of the “La Clapière” landslide evolution analysed from ortho-rectified aerial photographs. Eng Geol 68:123–139CrossRefGoogle Scholar
  15. Chrétien M, Lataste J-F, Fabre R, Denis A (2013) Electrical resistivity tomography to understand clay behavior during seasonal water content variations. Eng Geol. doi: 10.1016/j.enggeo.2013.11.019 Google Scholar
  16. Collins BD, Znidarcic D (2004) Stability analyses of rainfall-induced landslides. J Geotech Geoenviron 130(4):362–372. doi: 10.1061/(ASCE)1090-0241(2004)130:4(362) CrossRefGoogle Scholar
  17. Compagnon F, Guglielmi Y, Mudry J, Follacci J-P, Ivaldi J-P (1997) Approche chimique et isotopique de l’origine des eaux en transit dans un grand mouvement de terrain: exemple du glissement de La Clapière (Alpes-Maritimes, France). Comptes Rendus de l'Acad des Sci Ser IIA Earth Planet Sci 325(8):565–570. doi: 10.1016/S1251-8050(97)89456-6 Google Scholar
  18. Corsini M, Ruffet G, Caby R (2004) Alpine and late-Hercynian geochronological constraints in the Argentera Massif (Western Alps). Eclogae Geol Helv 97:3–15. doi: 10.1007/s00015-004-1107-8 CrossRefGoogle Scholar
  19. Crosta GB (1998) Regionalization of rainfall thresholds: an aid to landslide hazard evaluation. Environ Geol 35(2–3):131–145. doi: 10.1007/s002540050300 CrossRefGoogle Scholar
  20. Crosta GB, di Prisco C, Frattini P, Frigerio G, Castellanza R, Agliardi F (2014) Chasing a complete understanding of the triggering mechanisms of a large rapidly evolving rockslide. Landslides 11:747–764. doi: 10.1007/s10346-013-0433-1 CrossRefGoogle Scholar
  21. Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with 10 electrode arrays. Geophys Prospect 52:379–398CrossRefGoogle Scholar
  22. Delacourt C, Allemand P, Berthier E, Raucoules D, Casson B, Grandjean P, Pambrun C, Varel E (2007) Remote-sensing techniques for analysing landslide kinematics: a review. Bull Soc Geol Fr 178(2):89–100. doi: 10.2113/gssgfbull.178.2.89 CrossRefGoogle Scholar
  23. El Bedoui S, Guglielmi Y, Lebourg T, Pérez J-L (2009) Deep-seated failure propagation in a fractured rock slope over 10,000 years: the La Clapière slope, the south-eastern French Alps. Geomorphology 105:232–238. doi: 10.1016/j.geomorph.2008.09.025 CrossRefGoogle Scholar
  24. El Bedoui S, Bois T, Jomard H, Sanchez G, Lebourg T, Tric E, Guglielmi Y, Bouissou S, Chemenda A, Rolland Y, Corsini M, Pérez JL (2011) Paraglacial gravitational deformations in the SW Alps: a review of field investigations, 10Be cosmogenic dating and physical modelling. Geol Soc Lond Spec Publ 351(1):11–25. doi: 10.1144/SP351.2 CrossRefGoogle Scholar
  25. Follacci J-P (1987) Les mouvements du versant de La Clapière à Saint-Etienne-de-Tinée (Alpes-Maritimes). Bull Lab Ponts et Chaussées 220(150–151):107–109Google Scholar
  26. Follacci J-P, Rochet L, Serratrice J-F (1993) Glissement de La Clapière, St. Etienne de Tinée, Synthèse des connaissances et actualisation des risques, rapp. 92/PP/UN/I/DRM/03/AI/01, 76 pp., Cent. Etud. Tech. de l’Equip., Nice, FranceGoogle Scholar
  27. Gance J, Sailhac P, Malet J-P (2015) Corrections of surface effect on apparent resistivity measurements. Geophys J Int 200:1118–1135. doi: 10.1093/gji/ggu453 CrossRefGoogle Scholar
  28. Grandjean G, Courry JC, Sanchez O, Bitri A, Garambois S (2011) Structural study of the Ballanz landslide (French Alps) using geophysical imagery. J Appl Geophys 75:537–542. doi: 10.1016/j.jappgeo.2011.07.008 CrossRefGoogle Scholar
  29. Guglielmi Y, Cappa F (2010) Regional-scale relief evolution and large landslides: insights from geomechanical analyses in the Tinée Valley (southern French Alps). Geomorphology 117:121–129. doi: 10.1016/j.geomorph.2009.11.016 CrossRefGoogle Scholar
  30. Guglielmi Y, Vengeon JM, Bertrand C, Mudry J, Follacci JP, Giraud A (2002) Hydrogeochemistry: an investigation tool to evaluate infiltration into large moving rock masses (case study of La Clapière and Séchilienne alpine landslides). Bull Eng Geol Environ 61:311–324. doi: 10.1007/s10064-001-0144-z CrossRefGoogle Scholar
  31. Gunzburger Y, Laumonier B (2002) Origine tectonique du pli supportant le glissement de terrain de la Clapière (Nord-Ouest du massif de l’Argentera-Mercantour, Alpes du Sud, France) d’après l’analyse de la fracturation. Compt Rendus Geosci 334(6):415–422. doi: 10.1016/S1631-0713(02)01761-3 CrossRefGoogle Scholar
  32. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98:239–267. doi: 10.1007/s00703-007-0262-7 CrossRefGoogle Scholar
  33. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall-duration control of shallow landslides and debris flows: an update. Landslides 5(1):3–17. doi: 10.1007/s10346-007-0112-1 CrossRefGoogle Scholar
  34. Hack R (2000) Geophysics for slope stability. Surv Geophys 21:423–448CrossRefGoogle Scholar
  35. Helmstetter A, Garambois S (2010) Seismic monitoring of Séchilenne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J Geophys Res 115:F03016. doi: 10.1029/2009JF001532 CrossRefGoogle Scholar
  36. Helmstetter A, Sornette D, Grasso J-R, Andersen JV, Gluzman S, Pisarenko V (2004) Slider block friction model for landslides: application to Vaiont and La Clapière landslides. J Geophys Res 109:B02409. doi: 10.1029/2002JB002160 CrossRefGoogle Scholar
  37. Jaboyedoff M, Oppikofer T, Abellán A, Derron MH, Loye A, Metzger R, Pedrazzini A (2012) Use of LIDAR in landslide investigations: a review. Nat Hazards 61(1):5–28. doi: 10.1007/s11069-010-9634-2 CrossRefGoogle Scholar
  38. Jomard H (2006) Analyse multi-échelles des deformations gravitaires du Massif de l’Argentera Mercantour. Thèse de Doctorat en Sciences de la Terre, Université de Nice Sophia-Antipolis, 217 ppGoogle Scholar
  39. Jomard H, Lebourg T, Tric E (2007) Identification of the gravitational boundary in weathered gneiss by geophysical survey: La Clapière landslide (France). J Appl Geophys 62:47–57. doi: 10.1016/j.jappgeo.2006.07.003 CrossRefGoogle Scholar
  40. Jomard H, Lebourg T, Guglielmi Y, Tric E (2010) Electrical imaging of sliding geometry and fluids associated with a deep seated landslide (La Clapière, France). Earth Surf Process Landf 35(5):588–599. doi: 10.1002/esp.1941 Google Scholar
  41. Jomard H, Lebourg T, Guglielmi Y (2013) Morphological analysis of deep-seated gravitational slope deformation (DSGSD) in the western part of the Argentera massif. A morpho-tectonic control? Landslides. doi: 10.1007/s10346-013-0434-0 Google Scholar
  42. Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bull Soc Geol Fr 178(2):101–112CrossRefGoogle Scholar
  43. Jongmans D, Bièvre G, Renalier F, Schwartz S, Beaurez N, Orengo Y (2009) Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièvres area (French Alps). Eng Geol 109:45–56. doi: 10.1016/j.enggeo.2008.10.005 CrossRefGoogle Scholar
  44. Julian M (1980) Les Alpes Maritimes Franco-Italiennes. Etude géomorphologique. Thèse présentée devant l’Université d’Aix-Marseille II, 26 juin 1976, Volume 2, 836 ppGoogle Scholar
  45. Julian M, Anthony E (1996) Aspects of landslide activity in the Mercantour Massif and the French Riviera, southeastern France. Geomorphology 15:275–289CrossRefGoogle Scholar
  46. Keefer DK (2002) Investigating landslides caused by earthquakes–a historical review. Surv Geophys 23(6):473–510. doi: 10.1023/A:1021274710840 CrossRefGoogle Scholar
  47. Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261(3):578–589. doi: 10.1016/j.epsl.2007.07.025 CrossRefGoogle Scholar
  48. Korup O, Densmore AL, Schlunegger F (2010) The role of landslides in mountain range evolution. Geomorphology 120(1):77–90. doi: 10.1016/j.geomorph.2009.09.017 CrossRefGoogle Scholar
  49. Le Roux O, Jongmans D, Kasperski J, Schwartz S, Potherat P, Lebrouc V, Lagabrielle R, Meric O (2011) Deep geophysical investigation of the large Séchilienne landslide (Western Alps, France) and calibration with geological data. Eng Geol 120:18–31. doi: 10.1016/j.enggeo.2011.03.004 CrossRefGoogle Scholar
  50. Lebourg T, Frappa M, Sirieix C (1999) Reconnaissance des surfaces de rupture dans les formations superficielles instables par mesures électriques. PANGEA 31:69–72Google Scholar
  51. Lebourg T, Binet S, Tric E, Jomard H, El Bedoui S (2005) Geophysical survey to estimate the 3D slipping surface and the 4D evolution of the water pressure on part of a deep seated landslide. Terra Nov. 17:399–406. doi: 10.1111/j.1365-3121.2005.00623.x
  52. Lebourg T, Hernandez M, Zerathe S, El Bedoui S, Jomard H, Fresia B (2010) Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach. Eng Geol 114:238–250. doi: 10.1016/j.enggeo.2010.05.001 CrossRefGoogle Scholar
  53. Lebourg T, Hernandez M, Jomard H, El Bedoui S, Bois T, Zerathe S, Tric E, Vidal M (2011) Temporal evolution of weathered cataclastic material in gravitational faults of the La Clapière deep-seated landslide by mechanical approach. Landslides. doi: 10.1007/s10346-010-0244-6 Google Scholar
  54. Loke MH (1996–2014) Tutorials: 2-D and 3-D electrical imaging surveys, www.geoelectrical.com, 169 pp
  55. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152. doi: 10.1111/j.1365-2478.1996.tb00142.x CrossRefGoogle Scholar
  56. Macfarlane DF (2009) Observations and predictions of the behaviour of large, slow-moving landslides in schist, Clyde Dam reservoir, New Zealand. Eng Geol 109:5–15. doi: 10.1016/j.enggeo.2009.02.005 CrossRefGoogle Scholar
  57. Mainsant G, Larose E, Brönnimann C, Jongmans D, Michoud C, Jaboyedoff M (2012) Ambient seismic noise monitoring of a clay landslide: Toward failure prediction. J Geophys Res 117:F01030. doi: 10.1029/2011JF002159 CrossRefGoogle Scholar
  58. Malet J-P, Boetzlé P, Ferhat G, Masson F, Ulrich P, (subm) Evaluation of different processing strategies of Continuous GPS (CGPS) observations for long-term landslide monitoring. J Geodesy, 24p. (in review)Google Scholar
  59. Meric O, Garambois S, Jongmans D, Wathelet M, Chatelain JL, Vengeon JM (2005) Application of geophysical methods for the investigation of large gravitational mass movement of Séchilienne, France. Can Geotech J 42:1105–1115. doi: 10.1139/T05-034 CrossRefGoogle Scholar
  60. Musumeci G, Ribolini A, Spagnolo M (2003) The effects of late Alpine tectonics in the morphology of the Argentera Massif (Western Alps, Italy-France). Quat Int 101–102:191–201CrossRefGoogle Scholar
  61. Perrone A, Lapenna V, Piscitelli S (2014) Electrical tomography technique for landslide investigations: a review. Earth-Sci Rev. doi: 10.1016/j.earscirev.2014.04.002 Google Scholar
  62. Prokešová R, Kardoš M, Tábořík P, Medveďová A, Stacke V, Chudý F (2014) Kinematic behaviour of a large earthflow defined by surface displacement monitoring, DEM differencing, and ERT imaging. Geomorphology 224:86–101. doi: 10.1016/j.geomorph.2014.06.029 CrossRefGoogle Scholar
  63. Samouëlian A, Cousin I, Tabbagh A, Bruand A, Richard G (2005) Electrical resistivity survey in soil science. Soil Tillage Res 83:173–193. doi: 10.1016/j.still.2004.10.004 CrossRefGoogle Scholar
  64. Schlögel R, Doubre C, Malet J-P, Masson F (2015a) Landslide deformation monitoring with ALOS/PALSAR imagery: a D-InSAR geomorphological interpretation method. Geomorphology 231:314–330. doi: 10.1016/j.geomorph.2014.11.031 CrossRefGoogle Scholar
  65. Schlögel R, Malet J-P, Doubre C, Lebourg T (2015b) Structural control on the kinematics of the deep-seated La Clapière landslide revealed by L-band InSAR observations. Landlides 1–14. doi: 10.1007/s10346-015-0623-0
  66. Segoni S, Lagomarsino D, Fanti R, Moretti S, Casagli N (2014) Integration of rainfall and susceptibility maps in the Emilia Romagna (Italy) regional-scale landslide warning system. Landslides. doi: 10.1007/s10346-014-0502-0 Google Scholar
  67. Tonnellier A, Helmstetter A, Malet J-P, Schmittbuhl J, Corsini A, Joswig M (2013) Seismic monitoring of soft-rock landslides: the Super-Sauze and Valoria case studies. Geophys J Int. doi: 10.1093/gii/ggt039 Google Scholar
  68. Tric E, Lebourg T, Jomard H, Le Cossec J (2010) Study of large-scale deformation induced by gravity on the La Clapière landslide (Saint-Etienne de Tinée, France) using numerical and geophysical approaches. J Appl Geophys 70:206–215. doi: 10.1016/j.jappgeo.2009.12.008 CrossRefGoogle Scholar
  69. Varnes DJ (1978) Slope movement types and processes. In: Schutler RL and Krizek RJ (eds) Landslides: analysis and control. TRB Special Report 176, Washington DC, pp 11–33Google Scholar
  70. Zerathe S, Lebourg T (2012) Evolution stages of large deep-seated landslides at the front of a subalpine meridional chain (Maritime-Alps, France). Geomorphology 138:390–403CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Edouard Palis
    • 1
  • Thomas Lebourg
    • 1
  • Emmanuel Tric
    • 1
  • Jean-Philippe Malet
    • 2
  • Maurin Vidal
    • 1
  1. 1.Univ. Nice-Sophia Antipolis, CNRS, IRD, Observatoire de la Côte d’Azur, Géoazur UMR 7329ValbonneFrance
  2. 2.Institut de Physique du Globe de Strasbourg, CNRS, UMR 7516/EOST, Université de StrasbourgStrasbourg CedexFrance

Personalised recommendations