Advertisement

Landslides

, Volume 13, Issue 6, pp 1493–1507 | Cite as

A robust debris-flow and GLOF risk management strategy for a data-scarce catchment in Santa Teresa, Peru

  • Holger FreyEmail author
  • Christian Huggel
  • Yves Bühler
  • Daniel Buis
  • Maria Dulce Burga
  • Walter Choquevilca
  • Felipe Fernandez
  • Javier García Hernández
  • Claudia Giráldez
  • Edwin Loarte
  • Paul Masias
  • Cesar Portocarrero
  • Luis Vicuña
  • Marco Walser
Original Paper

Abstract

The town of Santa Teresa (Cusco Region, Peru) has been affected by several large debris-flow events in the recent past, which destroyed parts of the town and resulted in a resettlement of the municipality. Here, we present a risk analysis and a risk management strategy for debris-flows and glacier lake outbursts in the Sacsara catchment. Data scarcity and limited understanding of both physical and social processes impede a full quantitative risk assessment. Therefore, a bottom-up approach is chosen in order to establish an integrated risk management strategy that is robust against uncertainties in the risk analysis. With the Rapid Mass Movement Simulation (RAMMS) model, a reconstruction of a major event from 1998 in the Sacsara catchment is calculated, including a sensitivity analysis for various model parameters. Based on the simulation results, potential future debris-flows scenarios of different magnitudes, including outbursts of two glacier lakes, are modeled for assessing the hazard. For the local communities in the catchment, the hazard assessment is complemented by the analysis of high-resolution satellite imagery and fieldwork. Physical, social, economic, and institutional vulnerability are considered for the vulnerability assessment, and risk is eventually evaluated by crossing the local hazard maps with the vulnerability. Based on this risk analysis, a risk management strategy is developed, consisting of three complementing elements: (i) standardized risk sheets for the communities; (ii) activities with the local population and authorities to increase social and institutional preparedness; and (iii) a simple Early Warning System. By combining scientific, technical, and social aspects, this work is an example of a framework for an integrated risk management strategy in a data scarce, remote mountain catchment in a developing country.

Keywords

Debris-flows GLOF RAMMS Risk management Early Warning System 

Notes

Acknowledgments

All the work presented in this study is part of the activities of the “Proyecto Glaciares,” funded by the Swiss Agency for Development and Cooperation (SDC), executed by the University of Zurich and Swiss partner institutions, in close collaboration with CARE Peru. We acknowledge the comments and suggestions from the Editor S. Cuomo and the reviews of P. Bobrowsky and an anonymous reviewer, which helped improving the article. K. Price from CARE Peru provided valuable comments on the manuscript.

Supplementary material

10346_2015_669_MOESM1_ESM.pdf (1 mb)
ESM 1 (PDF 1050 kb)

References

  1. Anderson MG, Holcombe E, Holm-Nielsen N, Monica Della R (2014) What are the emerging challenges for community-based landslide risk reduction in developing countries? Nat Hazards Rev 15:128–139. doi: 10.1061/(ASCE)NH.1527-6996.0000125 CrossRefGoogle Scholar
  2. Arattano M, Marchi L (2008) Systems and sensors for debris-flow monitoring and warning. Sensors 8:2436–2452CrossRefGoogle Scholar
  3. Armento MC, Genevois R, Tecca PR (2008) Comparison of numerical models of two debris flows in the Cortina d’ Ampezzo area, Dolomites, Italy. Landslides 5:143–150. doi: 10.1007/s10346-007-0111-2 CrossRefGoogle Scholar
  4. Berger C, McArdell BW, Schlunegger F (2011) Direct measurement of channel erosion by debris flows, Illgraben, Switzerland. J Geophys Res 116, F01002. doi: 10.1029/2010JF001722 CrossRefGoogle Scholar
  5. Best M, Bobrowsky P, Douma M, Carlotto V, Pari W (2009) Geophysical surveys at Machu Picchu, Peru: results for landslide hazard investigations. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 265–273CrossRefGoogle Scholar
  6. Bühler Y, Christen M, Kowalski J, Bartelt P (2011) Sensitivity of snow avalanche simulations to digital elevation model quality and resolution. Ann Glaciol 52:72–80CrossRefGoogle Scholar
  7. Bulmer MH, Farquhar T (2010) Design and installation of a Prototype Geohazard Monitoring System near Machu Picchu, Peru. Nat Hazards Earth Syst Sci 10:2031–2038. doi: 10.5194/nhess-10-2031-2010 CrossRefGoogle Scholar
  8. Canuti P, Margottini C, Casagli N, Delmonaco G, Falconi L, Fanti R, Ferretti A, Lollino G, Puglisi C, Spizzichino D, Tarchi D (2009) Monitoring, geomorphological evolution and slope stability of Inca Citadel of Machu Picchu: results from Italian INTERFRASI project. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 249–257CrossRefGoogle Scholar
  9. CARE (2009) Climate Vulnerability and Capacity Analysis—Handbook. pp 1–52Google Scholar
  10. Carey M, McDowell G, Huggel C, Jackson J, Portocarrero C, Reynolds JM, Vicuña L (2015) Integrated approaches to adaptation and disaster risk reduction in dynamic socio-cryospheric systems. In: Haeberli W, Whiteman C (eds) Snow and ice-related hazards, risks and disasters. Elsevier, Amsterdam, pp 219–261CrossRefGoogle Scholar
  11. Carlotto V, Cardenas J, Romero D, Valdivia W, Mattos E, Tyntaya, D (2000) Los aluviones de Aobamba (Machupicchu) y Sacsara (Santa Teresa): geologia, geodinamica y analisis de datos. In: Proccedings of X Congreso Peruano de Geología, Lima, Sociedad Geologica del Peru. Lima, p 126Google Scholar
  12. Christen M, Bartelt P, Kowalski J (2010a) Back calculation of the “In den Arelen” avalanche with RAMMS: interpretation of model results. Ann Glaciol 51:161–168CrossRefGoogle Scholar
  13. Christen M, Kowalski J, Bartelt P (2010b) RAMMS: numerical simulation of dense snow avalanches in three-dimensional terrain. Cold Reg Sci Technol 63:1–14. doi: 10.1016/j.coldregions.2010.04.005 CrossRefGoogle Scholar
  14. Corominas J, van Westen C, Frattini P, Cascini L, Malet JP, Fotopoulou S, Catani F, Van Den Eeckhaut M, Mavrouli O, Agliardi F, Pitilakis K, Winter MG, Pastor M, Ferlisi S, Tofani V, Hervás J, Smith JT (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ. doi: 10.1007/s10064-013-0538-8 Google Scholar
  15. Costa J, Schuster R (1988) The formation and failure of natural dams. Geol Soc Am Bull 7:1054–1068CrossRefGoogle Scholar
  16. Evans S (1986) Landslide damming in the Cordillera of Western Canada. Collection 3:111–130Google Scholar
  17. Guzzetti F, Reichenbach P, Wieczorek GF (2003) Rockfall hazard and risk assessment in the Yosemite Valley, California, USA. Nat Hazards Earth Syst Sci 3:491–503CrossRefGoogle Scholar
  18. Hergarten S, Robl J (2015) Modelling rapid mass movements using the shallow water equations in Cartesian coordinates. Nat Hazards Earth Syst Sci 15(3):671–685CrossRefGoogle Scholar
  19. Hermoza J, Ortiz M, Benavente R, Mattos E, Portocarrero C, Tamayo W, Villafurete J (1998) Informe geológico glaciológico del aluvión de Aobamba-Cusco. EGEMSA (Empresa de generación electrica Machupicchu S.A.)Google Scholar
  20. Holcombe E, Anderson M, Holm-Nielsen N (2013) Learning by doing: community based landslide risk reduction. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp 297–302CrossRefGoogle Scholar
  21. Huggel C, Haeberli W, Kääb A, Bieri D, Richardson S (2004) Assessment procedures for glacial hazards in the Swiss Alps. Can Geotech J 41:1068–1083CrossRefGoogle Scholar
  22. Huggel C, Rohrer M, Calanca P, Salzmann N, Vergara W, Quispe N, Ceballos JL (2012) Early warning systems: the “last mile” of adaptation. EOS, Trans Am Geophys Union 93:209–211CrossRefGoogle Scholar
  23. Huggel C, Scheel M, Albrecht F, Andres N, Calanca P, Jurt C, Khabarov N, Mira-Salama D, Rohrer M, Salzmann N, Silva Y, Silvestre E, Vicuña L, Zappa M (2015) A framework for the science contribution in climate adaptation: experiences from science-policy processes in the Andes. Environ Sci Pol 47:80–94. doi: 10.1016/j.envsci.2014.11.007 CrossRefGoogle Scholar
  24. Hungr O (2005) Classification and terminology. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Heidelberg, Germany, in association with Praxis Publishing Ltd., Chichester, UK, pp 9–23Google Scholar
  25. Hürlimann M, Copons R, Altimir J (2006) Detailed debris flow hazard assessment in Andorra: a multidisciplinary approach. Geomorphology 78:359–372. doi: 10.1016/j.geomorph.2006.02.003 CrossRefGoogle Scholar
  26. Hussin HY, Quan Luna B, van Westen CJ, Christen M, Malet J-P, van Asch TWJ (2012) Parameterization of a numerical 2-D debris flow model with entrainment: a case study of the Faucon catchment, Southern French Alps. Nat Hazards Earth Syst Sci 12(10):3075–3090. doi: 10.5194/nhess-12-3075-2012 CrossRefGoogle Scholar
  27. Jakob M, Holm K, Weatherly H, Liu S, Ripley N (2013) Debris flood risk assessment for Mosquito Creek, British Columbia, Canada. Nat Hazards 65:1653–1681. doi: 10.1007/s11069-012-0436-6 CrossRefGoogle Scholar
  28. Jurt C (2009) Perceptions of natural hazards in the context of social, cultural, economic and political risks. Dissertation, University of BernGoogle Scholar
  29. Künzler M, Huggel C, Ramírez JM (2012) A risk analysis for floods and lahars: case study in the Cordillera Central of Colombia. Nat Hazards 64:767–796. doi: 10.1007/s11069-012-0271-9 CrossRefGoogle Scholar
  30. Petley DN (2012) Landslides and engineered slopes: protecting society through improved understanding. In: Eberhardt E, Froese C, Turner K, Leroueil S (eds) Landslides and engineered slopes: protecting society through improved understanding. Taylor & Francis, London, pp 3–13Google Scholar
  31. Pirulli M, Sorbino G (2008) Assessing potential debris flow runout: a comparison of two simulation models. Nat Hazards Earth Syst Sci 8:961–971CrossRefGoogle Scholar
  32. Puglisi C, Falconi L, Lentini A, Leoni G, Prada CR (2013) Debris flow risk assessment in the Aguas Calientes Village (Cusco, Perù). In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, pp 519–526CrossRefGoogle Scholar
  33. Raetzo H, Lateltin O, Bollinger D, Tripet J (2002) Hazard assessment in Switzerland—codes of practice for mass movements. Bull Eng Geol Environ 621:263–268. doi: 10.1007/s10064-002-0163-4 Google Scholar
  34. Reichenbach P, Günther A, Glade T (2013) Preface “Landslide hazard and risk assessment at different scales.”. Nat Hazards Earth Syst Sci 13:2169–2171. doi: 10.5194/nhess-13-2169-2013 CrossRefGoogle Scholar
  35. Remondo J, Bonachea J, Cendrero A (2008) Quantitative landslide risk assessment and mapping on the basis of recent occurrences. Geomorphology 94:496–507. doi: 10.1016/j.geomorph.2006.10.041 CrossRefGoogle Scholar
  36. Rickenmann D (1999) Empirical relationships for debris flows. Nat Hazards 19:47–77. doi: 10.1023/A:1008064220727 CrossRefGoogle Scholar
  37. Salm B (1993) Flow, flow transition and runout distances of flowing avalanches. Ann Glaciol 18:221–226Google Scholar
  38. Salm B, Burkhard A, Gubler HU (1990) Berechnung von Fliesslawinen. Eine Anleitung für den Praktiker mit Beispielen. Eidgenössisches Institut für Schnee- und Lawinenforschung SLF, DavosGoogle Scholar
  39. Sassa K (2013) Social impact of IPL 101–1 “Landslide Investigation in Inca’s World Heritage, Machu Pichu, Peru”. In: Sassa K, Rouhban B, Briceño S, McSaveney M, He B (eds) Landslides: global risk preparedness. Springer, Berlin, pp 43–58CrossRefGoogle Scholar
  40. Sassa K, Fukuoka H, Carreno R (2009) Landslide investigation and capacity building in the Machu Picchu—Aguas Calientes Area (IPL C101-1). In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 229–248CrossRefGoogle Scholar
  41. Scheel MLM, Rohrer M, Huggel C, Santos Villar D, Silvestre E, Huffman GJ (2011) Evaluation of TRMM Multi-satellite Precipitation Analysis (TMPA) performance in the Central Andes region and its dependency on spatial and temporal resolution. Hydrol Earth Syst Sci 15:2649–2663. doi: 10.5194/hess-15-2649-2011 CrossRefGoogle Scholar
  42. Scheidl C, Rickenmann D, McArdell BW (2013) Runout prediction of debris flows and similar mass movements. Landslide Science and Practice: Spatial Analysis and Modelling, pp 221–229Google Scholar
  43. Schneider D, Huggel C, Cochachin A, Guillén S, García J (2014) Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv Geosci 35:145–155. doi: 10.5194/adgeo-35-145-2014 CrossRefGoogle Scholar
  44. Schraml K, Thomschitz B, McArdell BW, Graf C, Kaitna R (2015) Modeling debris-flow runout patterns on two alpine fans with different dynamic simulation models. Nat Hazards Earth Syst Sci 15(7):1483–1492CrossRefGoogle Scholar
  45. Smith EA, Asrar G, Furuhama Y et al (2007) International Global Precipitation Measurement (GPM) program and mission: an overview. In: Levizzani V, Bauer P, Turk FJ (eds) Measuring precipitation from space: EURAINSAT and the future. United States Government, pp 611–653Google Scholar
  46. Sudmeier-Rieux K, Jaquet S, Derron M-H, Jaboyedoff M, Devkota S (2012) A case study of coping strategies and landslides in two villages of Central-Eastern Nepal. Appl Geogr 32:680–690. doi: 10.1016/j.apgeog.2011.07.005 CrossRefGoogle Scholar
  47. UNEP (2012) Early warning systems: a state of the art analysis and future directions. UNEP, NairobiGoogle Scholar
  48. UNFCCC (2012) Current knowledge on relevant methodologies and data requirements as well as lessons learned and gaps identified at different levels, in assessing the risk of loss and damage associated with the adverse effects of climate change. UN Technical paperGoogle Scholar
  49. Vilimek V, Klimes J, Vlcko J, Carreno R (2006) Catastrophic debris flows near Machu Picchu village (Aguas Calientes), Peru. Environ Geol 50:1041–1052. doi: 10.1007/s00254-006-0276-3 CrossRefGoogle Scholar
  50. Voellmy A (1955) Über die Zerstörungskraft von Lawinen. Schweizerische Bauzeitung 73:159–162, 212–217, 246–249, 280–285. [German]Google Scholar
  51. Westoby MJ, Glasser NF, Brasington J, Hambrey MJ, Quincey DJ, Reynolds JM (2014) Modelling outburst floods from moraine-dammed glacial lakes. Earth Sci Rev 134:137–159. doi: 10.1016/j.earscirev.2014.03.009 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Holger Frey
    • 1
    Email author
  • Christian Huggel
    • 1
  • Yves Bühler
    • 2
  • Daniel Buis
    • 1
  • Maria Dulce Burga
    • 3
  • Walter Choquevilca
    • 4
  • Felipe Fernandez
    • 4
  • Javier García Hernández
    • 5
  • Claudia Giráldez
    • 1
  • Edwin Loarte
    • 6
  • Paul Masias
    • 7
  • Cesar Portocarrero
    • 8
  • Luis Vicuña
    • 1
  • Marco Walser
    • 1
  1. 1.Department of GeographyUniversity of ZurichZurichSwitzerland
  2. 2.WSL Institute for Snow and Avalanche Research SLFDavosSwitzerland
  3. 3.Instituto de Ciencias de la Naturaleza, Territorio y Energías Renovables (INTE)Pontificia Universidad Católica del PerúLimaPeru
  4. 4.CARE PeruCuscoPeru
  5. 5.Centre de Recherche sur l’Environnement Alpin (CREALP)SionSwitzerland
  6. 6.Department of GeographyUniversity of ValenciaValènciaSpain
  7. 7.Corporación RD SLRCuscoPeru
  8. 8.HuarazPeru

Personalised recommendations