, Volume 13, Issue 5, pp 1035–1047 | Cite as

Investigation and dynamic analysis of a catastrophic rock avalanche on September 23, 1991, Zhaotong, China

  • Aiguo XingEmail author
  • Gonghui Wang
  • Yueping Yin
  • Chuan Tang
  • Zemin Xu
  • Weile Li
Original Paper


At 6:10 p.m. on September 23, 1991, a catastrophic rock avalanche occurred in Zhaotong, Yunnan, southwestern China. Over 216 people were killed when the Touzhai village was overwhelmed directly in the path of the landslide. The landslide involved the failure of about 12 Mm3 of jointed basaltic rock mass from the source area. The displaced materials ran out a horizontal distance of 3650 m over a vertical distance of 960 m, equivalent to a Fahrböschung of 14.7°, and covered an area of 1.38 km2. To provide information for hazard zonation of similar type of potential landslides in the same area, we used a dynamic model (DAN-W) with three alternative rheological models to simulate the runout behaviour of the displaced landslide materials and found that a combination of the frictional model and Voellmy model could provide the best performance in simulating this landslide. The simulated results indicated that the duration of the movement is estimated at about 175 s for a mean velocity 21 m/s.


Rock avalanche Long runout Dynamic analysis DAN-W model 



This study was supported by the National Natural Science Foundation of China (No. 41272382 and 41372332) and National Science Fund for Distinguished Young Scholars (No. 41225011). We are grateful to Prof. O. Hungr for supplying a copy of the DAN-W software.


  1. Boultbee N (2005) Characterization of the Zymoetz River rock avalanche. M.Sc. thesis, Simon Fraser University, BurnabyGoogle Scholar
  2. Chen H, Lee CF (2003) A dynamic model for rainfall-induced landslides on natural slopes. Geomorphology 51(4):269–288CrossRefGoogle Scholar
  3. Chigira M, Wu XY, Inokuchi T, Wang GH (2010) Landslides induced by the 2008 Wenchuan earthquake, Sichuan, China. Geomorphology 118(3-4):225–238CrossRefGoogle Scholar
  4. Crosta GB, Imposimato S, Roddeman DG (2003) Numerical modelling of large landslides stability and runout. Nat Hazards Earth Systs Sci 3(6):523–538CrossRefGoogle Scholar
  5. Dai FC, Tu XB, Xu C, Gong QM, Yao X (2011) Rock avalanches triggered by oblique-thrusting during the 12 May 2008 Ms 8.0 Wenchuan earthquake, China. Geomorphology 132(3-4):300–318CrossRefGoogle Scholar
  6. Denlinger RP, Iverson RM (2004) Granular avalanches across irregular three-dimensional terrain: 1. Theory and computation. J Geophys Res Earth Surf 109(F1):1–14CrossRefGoogle Scholar
  7. Evans SG, Hungr O, Clague JJ (2001) Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; implications for landslide hazard assessment on dissected volcanoes. Eng Geol 61:29–51CrossRefGoogle Scholar
  8. Evans SG, Guthrie RH, Roberts NJ, Bishop NF (2007) The disastrous 17 February 2006 rockslide-debris avalanche on Leyte Island, Philippines: a catastrophic landslide in tropical mountain terrain. Nat Hazards Earth Syst Sci 7:89–101CrossRefGoogle Scholar
  9. Huang RQ (2009) Some catastrophic landslides since the twentieth century in the southwest of China. Landslides 6:69–81CrossRefGoogle Scholar
  10. Huang Y, Zhang WJ, Xu Q, Xie P, Hao L (2012) Run-out analysis of flow-like landslides triggered by the Ms 8.0 2008 Wenchuan earthquake using smoothed particle hydrodynamics. Landslides 9(2):275–283CrossRefGoogle Scholar
  11. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(4):610–623CrossRefGoogle Scholar
  12. Hungr O, Evans SG (1996) Rock avalanche run out prediction using a dynamic model. In: Senneset (ed.) Landslide Proc Int Symp Trondheim 1:33–238Google Scholar
  13. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches: an analysis of a long run-out. Geol Soc Am Bull 116(9-10):1240–1252CrossRefGoogle Scholar
  14. Hungr O, McDougall S, Bovis M (2005) Entrainment of material by debris flows. In: Jakob H (ed) Debris flow hazards and related phenomena. Springer, Heidelberg, pp 135–158CrossRefGoogle Scholar
  15. Kilburn CRJ, Petley DN (2003) Forecasting giant, catastrophic slope collapse: lessons from Vajont, Northern Italy. Geomorphology 54:21–32CrossRefGoogle Scholar
  16. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097CrossRefGoogle Scholar
  17. McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42(5):1437–1448CrossRefGoogle Scholar
  18. McDougall S, Boultbee N, Hungr O, Stead D, Schwab JW (2006) The Zymoetz River landslide, British Columbia, Canada: description and dynamic analysis of a rock slide-debris flow. Landslides 3:195–204CrossRefGoogle Scholar
  19. Pastor M, Blanc T, Haddad B, Petrone S, Sanchez Morles M, Drempetic V, IssIer D, Crosta GB, Cascini L, Sorbino G, Cuomo S (2014) Application of a SPH depth-integrated model to landslide run-out analysis. Landslides 11:793–812CrossRefGoogle Scholar
  20. Pirulli M, Mangeney A (2008) Results of back-analysis of the propagation of rock avalanches as a function of the assumed rheology. Rock Mech Rock Eng 41(1):59–84CrossRefGoogle Scholar
  21. Poisel R, Preh A, Hungr O (2008) Run out of landslides—continuum mechanics versus discontinuum mechanics models. Geomech Tunne 1(5):358–366CrossRefGoogle Scholar
  22. Pudasaini SP, Miller SA (2013) The hypermobility of huge landslides and avalanches. Eng Geol 157:124–132CrossRefGoogle Scholar
  23. Sassa K (1988) Geotechnical model for the motion of landslides. In: Proc. 5th International Symposium on Landslides, “Landslides”, Balkema, Rotterdam, vol.1. pp 37–56Google Scholar
  24. Shen JH, Wang LS, Li TB, Zhao QH (2002) Structural characteristics of basaltic rock masses in Southwestern Sichuan, China. J Chengdu Univ Technol 29(6):680–685Google Scholar
  25. Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100(1-2):11–26CrossRefGoogle Scholar
  26. Tan JZ (1993) Discussion on the motion characteristics of the Touzhai landslide. Geol Hazards Environ Preserv 4(1):37–43Google Scholar
  27. Wen BP, Wang EZ, Wang SJ, Zhang JM (2004) Characteristics of rapid giant landslides in China. Landslides 1:247–261CrossRefGoogle Scholar
  28. Xu ZM, Huang RQ (2010) The geological structure constraint for massive and catastrophic landslides in Permian Emeishan basalt. Geol Rev 56(2):224–236 (in Chinese) Google Scholar
  29. Xu ZM, Huang RQ, Tang ZG (2007) Engineering geological characteristics of the Touzhai Landslide and its occurrence mechanisms. Geol Rev 53(5):691–698 (in Chinese) Google Scholar
  30. Xu C, Xu XW, Yao X, Dai FC (2014) Three (nearly) complete inventories of landslides triggered by the May 12, 2008 Wenchuan Mw 7.9 earthquake of China and their spatial distribution statistical analysis. Landslides 11(3):441–461CrossRefGoogle Scholar
  31. Yin YP (2011) Recent catastrophic landslides and mitigation in China. J Rock Mech Geotech Eng 3(1):10–18CrossRefGoogle Scholar
  32. Yin YP, Wang FW, Sun P (2009) Landslide hazards triggered by the 2008 Wenchuan earthquake, Sichuan, China. Landslides 6(2):139–152CrossRefGoogle Scholar
  33. Yin YP, Liu CZ, Chen HQ, Ren J, Zhu CB (2013) Investigation on catastrophic landslide of January 11, 2013 at Zhaojiagou, Zhenxiong County, Yunnan Province. J Eng Geol 21(1):6–15 (in Chinese) Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Aiguo Xing
    • 1
    Email author
  • Gonghui Wang
    • 2
  • Yueping Yin
    • 3
  • Chuan Tang
    • 4
  • Zemin Xu
    • 5
  • Weile Li
    • 4
  1. 1.State Key Laboratory of Ocean EngineeringShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Research Center on Landslides, Disaster Prevention Research InstituteKyoto UniversityUjiJapan
  3. 3.China Institute of Geo-Environment MonitoringBeijingChina
  4. 4.State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionChengdu University of TechnologyChengduChina
  5. 5.Department of Civil EngineeringKunming University of Science and TechnologyKunmingChina

Personalised recommendations