Advertisement

Landslides

, Volume 13, Issue 4, pp 683–696 | Cite as

Analysis of rainfall preceding debris flows on the Smědavská hora Mt., Jizerské hory Mts., Czech Republic

  • Jana SmolíkováEmail author
  • Jan Blahut
  • Vít Vilímek
Original Paper

Abstract

In August 2010, extreme rainfall affected the north of the Czech Republic and caused regional floods and landslides. Three torrential debris flows originated in the Jizerské hory Mts., close to Bílý Potok on the north slope of the Smědavská hora Mt. The rainfall situation which triggered the debris flow was analyzed and compared with the rainfall situation in 1958 when a debris flow occurred in the same area. The rainfall data were obtained from rain gauges of the Czech Hydrometeorological Institute. Four rain gauges were chosen close to the Smědavská hora Mt. with data of daily amounts from 1983 to 2013 and 10-min intensity or hourly amounts from the specific period. The data from 1958 were available from three different rain gauges (only daily amounts). The data series were not complete so linear regression was applied to interpolate them. A number of analyses were carried out including daily rainfall, 2-day/3-day moving values, antecedent precipitation index (API) of 5/10/30 days, 10-min intensity, and hourly amounts, and the trigger factor of the debris flow in the study area was also investigated. It was determined that for the triggering of debris flows, both high API values as well as high-intensity short-duration rainfall is needed. It was documented that in cases of solely high API indices or high-intensity short-duration rainfalls, no debris flows were initiated.

Keywords

Debris flow Rainfall pattern Rainfall thresholds Jizerské hory Mts Czech Republic 

Notes

Acknowledgments

The study was supported by Grant Agency of Charles University in Prague, Czech Republic (GAUK 425911/2011). This work was carried out thanks to the support of the long-term conceptual development research organisation RVO: 67985891. We are grateful to the Czech Hydrometeorological Institute for provided rainfall data and to Václav Vajskebr, MSc. for rainfall data preparation. We are also grateful to Jiří Řehoř, MSc. for his assistance in the statistical processing of the rainfall data. Finally, the authors wish to thank two anonymous reviewers for their constructive comments.

References

  1. Aleotti P (2004) A warning system for rainfall-induced shallow failures. Eng Geol 73:247–265CrossRefGoogle Scholar
  2. Aleotti P, Chowdhury R (1999) Landslide hazard assessment: summary review and new perspectives. Bull Eng Geol Environ 58:21–44CrossRefGoogle Scholar
  3. Bhandari RK, Senanayake KS, Thayalan N (1991) Pitfalls in the prediction on landslide through rainfall data. In: Bell DH (ed) Landslides. Rotterdam: A.A. Balkema 2:887–890Google Scholar
  4. Blahut J, Smolíková J, Vilímek V (2012a) Reconstruction of debris flows from Smědavská hora Mt., using a regional run-out model. Geosci Res Rep 2011:66–69Google Scholar
  5. Blahut J, Poretti I, Sterlacchini S, De Amicis M (2012b) Database of geo-hydrological disasters for civil protection purposes. Nat Hazards 60(3):1065–1083. doi: 10.1007/s11069-011-9893-6 CrossRefGoogle Scholar
  6. Brand EW, Premchitt J, Phillipson HB (1984) Relationship between rainfall and landslides in Hong Kong. In: Proceedings 4th International Symposium on Landslides. Toronto: 1:377–384Google Scholar
  7. Brand EW (1989) Occurrence and significance of landslides in Southeast Asia. In: Brabb EE, Harrod BL (eds) Landslides: extent and economic significance. A.A. Balkema, Rotterdam, pp 303–324Google Scholar
  8. Caine N (1980) The rainfall intensity-duration control of shallow landslides and debris flows. Geogr Ann 62 A(1–2):23–27CrossRefGoogle Scholar
  9. Cannon SH, Gartner JE (2005) Wildfire-related debris flow from hazards perspective. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Berlin, pp 363–385CrossRefGoogle Scholar
  10. Cardinali M, Galli M, Guzzetti F, Ardizzone F, Reichenbach P, Bartoccini P (2005) Rainfall induced landslides in December 2004 in South-Western Umbria, Central Italy. Nat Hazards Earth Syst Sci 6:237–260CrossRefGoogle Scholar
  11. Chaloupský J, Červenka J, Jetel J, Králík F, Líbalová J, Píchová E, Pokorný J, Pošmourný K, Sekyra J, Shrbený O, Šalanský K, Šrámek J, Václ J (1989) Geologie Krkonoš a Jizerských hor (Geology of Krkonoše and Jizerské hory Mts.). Academia, PrahaGoogle Scholar
  12. CHMI (2010) Vyhodnocení povodní v srpnu 2010 (Evaluation of the flood in August 2010). Vyhodnocení průběhu povodně ve vrcholových partiích Jizerských hor-hydrologické vyhodnocení průběhu povodní. CHMI Attachment n. 3 (in Czech)Google Scholar
  13. Černá B (2011) Reconstruction of the continental glaciation in the northern slope of the Jizera Mts. Sborník geologických věd-Antropozoikum 27:23–38Google Scholar
  14. Corominas J, Moya J (1996) Historical landslides in the Eastern Pyrenees and their relation to rainy events. In: Irigaray C, Fernandez T (eds) Landslides (Chacon J. Rotterdam, A.A. Balkema, pp 125–132Google Scholar
  15. Corominas J, Moya J (1999) Reconstructing recent landslide activity in relation to rainfall in the Llobregat River basin, Eastern Pyrenees, Spain. Geomorphology 30:79–93CrossRefGoogle Scholar
  16. Crosta GB, Frattini P (2001) Rainfall thresholds for triggering soil slips and debris flow. In: Guzzetti F, Roth G (eds) Proceedings of the 2nd EGS Plinius Conference on Mediterranean Storm (Mugnai A. Italy, Siena, pp 463–487Google Scholar
  17. Crozier MJ, Eyles RJ (1980) Assessing the probability of rapid mass movement. In: Technical Groups, Proceedings of 3rd Australia-New Zealand Conference on Geomechanics. New Zealand, Wellington:247–251Google Scholar
  18. Crozier MJ (1999) Prediction of rainfall-triggered landslides: a test of the antecedent water status model. Earth Surf Process Landf 24:825–833CrossRefGoogle Scholar
  19. De Vita P (2000) Fenomeni di instabilità della coperture piroclastiche dei monti Lattari, di Sarno e di Salerno (Campania) ed analisi degli eventi pluviometrici determinanti. Quaderni di Geologia Applicata 7(2):213–235Google Scholar
  20. Gariano SL, Brunetti MT, Iovine G, Melillo M, Peruccacci S, Terranova O, Vennari V, Guzzetti F (2015) Calibration and validation of rainfall thresholds for shallow landslide forecasting in Sicily, southern Italy. Geomorphology 228:653–665CrossRefGoogle Scholar
  21. Govi M, Sorzana PF (1980) Landslide susceptibility as function of critical rainfall amount in Piedmont basin (North-Western Italy). Studia Geomorphologica Carpatho-Balcanica 14:43–60Google Scholar
  22. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2007) Rainfall thresholds for the initiation of landslides in central and southern Europe. Meteorog Atmos Phys 98:239–267CrossRefGoogle Scholar
  23. Iverson RM (2000) Landslide triggering by rain infiltration. Water Resour Res 36(7):1897–1910CrossRefGoogle Scholar
  24. Jakob M, Weatherly H (2003) A hydroclimatic threshold for landslide initiation on the North Shore Mountains of Vancouver, British Columbia. Geomorphology 54(3–4):137–156CrossRefGoogle Scholar
  25. Janeček M, Bečvář M, Bohuslávek J, Dufková J, Dumbrovský J, Dostál T, Hula J, Jakubíková A, Kadlec V, Krása J, Kubátová E, Novotný I, Podhrázská J, Tippl M, Toman F, Vopravil J, Vrána K (2007) Ochrana zemědělské půdy před erozí, Metodika. (Protection of agricultural land against erosion, the methodology). Výzkumný ústav meliorací a ochrany půdy, v.v.i., Praha, pp 76 (in Czech)Google Scholar
  26. Kim SK, Hong WP, Kim YM (1991) Prediction of rainfall-triggered landslides in Korea. In: Bell DH (ed) Landslides. A.A. Balkema, Rotterdam, pp 989–994Google Scholar
  27. Kohler MA, Linsley RK (1951) Predicting the runoff from storm rainfall. Weather Bureau, US Department of Commerce, Research Paper No.34, WashingtonGoogle Scholar
  28. Marchi L, Arattano M, Deganutti AM (2002) Ten years of debris-flow monitoring in the Moscardo Torrent (Italian Alps). Geomorphology 46:1–17CrossRefGoogle Scholar
  29. Mishra SK, Singh VP (2003) Soil conservation service curve number (SCS-CN) methodology. Kluwer Academic Publisher, DordrechtCrossRefGoogle Scholar
  30. Mrázová Š, Krupička J (2011) Svahové deformace a granitová tektonika na Smědavské hoře v Jizerských horách (Slope deformations and granite tectonics on the Smědavská hora Mt in Jizerské hory Mts.). Geoscie Res Rep 2010 2010:70–73 (in Czech) Google Scholar
  31. Munzar J, Ondráček S, Auer I (2011) Central European one-day precipitation records. Morav Geogr Rep 19(1/2001):32–39Google Scholar
  32. Nemčok A, Pašek J, Rybář J (1972) Classification of landslides and other mass movements. Rock Mech 4:71–78CrossRefGoogle Scholar
  33. Nevrlý M (1976) Kniha o Jizerských horách. (The book about the Jizerské hory Mts.). Severočeské nakladatelství, Ústí nad Labem (in Czech)Google Scholar
  34. Nikolopoulos EI, Crema S, Marchi L, Marra F, Guzzetti F, Borga M (2014) Impact of uncertainty in rainfall estimation on the identification of rainfall thresholds for debris flow occurrence. Geomorphology 221:286–297CrossRefGoogle Scholar
  35. Nývlt D (2000) Geomorphological aspects of glaciation in the Oldřichov Highland, Northern Bohemia, Czechia. Acta Univ Carol Geogr 35:171–183Google Scholar
  36. Panziera L, Germann U, Gabella M, Mandapaka PV (2011) NORA—nowcasting of orographic rainfall by means of analogues. Q J R Meteorol Soc 137:2106–2123CrossRefGoogle Scholar
  37. Pasuto A, Silvano S (1989) Rainfall as a triggering factor of shallow mass movements. A case study in the Dolomites. Italy Environ Geol 35(2–3):184–189Google Scholar
  38. Peres DJ, Cancelliere A (2014) Derivation and evaluation of landslide-triggering thresholds by a Monte Carlo approach. Hydrol Earth Syst Sci 18:4913–4931CrossRefGoogle Scholar
  39. Rebetez M, Lugon R, Baeriswyl PA (1997) Climatic change and debris flows in high mountain regions: the case study of the Ritigraben Torrent (Swiss Alp). Clim Chang 36:371–389CrossRefGoogle Scholar
  40. Rybář J, Novotný J (2005) Vliv klimatogenních faktorů na stabilitu přirozených a antropogenních svahů (The influence of the clima factors on the stability of natural and anthropogenic slopes). Zpravodaj Hnědé uhlí 3:13–28 (in Czech) Google Scholar
  41. Smolíková J, Blahůt J, Tábořík P, Žížala D, Vilímek V (2013) Shallow slope deformations triggered by extreme rainfall case studies from the Czech Republic. In: Proceedings of the 8th IAG International Conference on Geomorphology, Paris, France: 653Google Scholar
  42. Starkel L (1979) The role of extreme meteorological events in the shaping of mountain relief. Geogr Pol 41:13–20Google Scholar
  43. Steinhart M (2010) Application of rainfall-runoff model Boussmo. Diploma thesis, Czech Agriculture University in Prague (in Czech)Google Scholar
  44. Tomášek M (1995) Půdní mapa ČR, měřítko 1:50 000: list 03–14 Liberec (1. vyd.). (Map of Soil of Czech Republic. Map sheet of Liberec). Český geologický ústav, PrahaGoogle Scholar
  45. Vacek S, Vančura K, Zingari PC, Jeník J, Simon J, Smejkal J (2003) Mountain forests of the Czech Republic. Ministry of Agriculture of the Czech Republic, Praha (in Czech) Google Scholar
  46. Wieczorek GF, Glade T (2005) Climatic factors influencing occurrence of debris flows. In: Jakob M, Hungr O (eds) Debris flow hazards and related phenomena. Springer, Berlin, pp 325–362CrossRefGoogle Scholar
  47. Wilson RC (2000) Climatic variations in rainfall thresholds for debris-flow aktivity. In: Proceedings 1st Plinius Conference on Mediterranean Storms (Claps P, Siccardi F, eds). Maratea:415–424Google Scholar
  48. Zhao Y, Wei F, Yang H, Jiang Y (2011) Discussion on using antecedent precipitation index to supplement relative soil moisture data series. Procedia Environ Sci 10:1489–1495CrossRefGoogle Scholar
  49. Záruba Q, Mencl V (1974) Inženýrská geologie [Engineering geology]. Academia, PrahaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Faculty of Science, Department of Physical Geography and GeoecologyCharles University in PraguePrague 2Czech Republic
  2. 2.Research Institute for Soil and Water Conservation, Soil Conservation Service-Laboratory SOWAC-GISPrague 5Czech Republic
  3. 3.Department of Engineering GeologyInstitute of Rock Structure and Mechanics, Czech Academy of SciencesPrague 8Czech Republic

Personalised recommendations