Landslides

, Volume 13, Issue 3, pp 437–450 | Cite as

Using wavelet tools to analyse seasonal variations from InSAR time-series data: a case study of the Huangtupo landslide

  • R. Tomás
  • Z. Li
  • J. M. Lopez-Sanchez
  • P. Liu
  • A. Singleton
Original Paper

Abstract

Synthetic aperture radar interferometry (InSAR) has proven to be a powerful tool for monitoring landslide movements with a wide spatial and temporal coverage. Interpreting landslide displacement time-series derived from InSAR techniques is a major challenge for understanding relationships between triggering factors and slope displacements. In this study, we propose the use of various wavelet tools, namely, continuous wavelet transform (CWT), cross wavelet transform (XWT) and wavelet coherence (WTC) for interpreting InSAR time-series information for a landslide. CWT enables time-series records to be analysed in time-frequency space, with the aim of identifying localized intermittent periodicities. Similarly, XWT and WTC help identify the common power and relative phase between two time-series records in time-frequency space, respectively. Statistically significant coherence and confidence levels against red noise (also known as brown noise or random walk noise) can be calculated. Taking the Huangtupo landslide (China) as an example, we demonstrate the capabilities of these tools for interpreting InSAR time-series information. The results show the Huangtupo slope is affected by an annual displacement periodicity controlled by rainfall and reservoir water level. Reservoir water level, which is completely regulated by the dam activity, is mainly in ‘anti-phase’ with natural rainfall, due to flood control in the Three Gorges Project. The seasonal displacements of the Huangtupo landslide is found to be ‘in-phase’ with respect to reservoir water level and the rainfall towards the front edge of the slope and to rainfall at the higher rear of the slope away from the reservoir.

Keywords

InSAR Wavelet analysis Continuous wavelet transform Cross wavelet transform Wavelet coherence Time-series Time-frequency space Landslide Triggering factors 

References

  1. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential sar interferograms. IEEE Trans Geosci Remote Sens 40:2375–2383. doi:10.1109/tgrs.2002.803792 CrossRefGoogle Scholar
  2. Bin W, Huiming T, Jiebin Z, Wei X, Jun L (2007) Deformation and failure mechanisms of reservoir landslide considering fluid–solid coupling effect. Chin J Rock Mech Eng 26:4484–4489Google Scholar
  3. Bittelli M, Valentino R, Salvatorelli F, Rossi Pisa P (2012) Monitoring soil-water and displacement conditions leading to landslide occurrence in partially saturated clays. Geomorphology 173–174:161–173. doi:10.1016/j.geomorph.2012.06.006 CrossRefGoogle Scholar
  4. Cascini L, Sorbino G, Cuomo S, Ferlisi S (2014) Seasonal effects of rainfall on the shallow pyroclastic deposits of the Campania region (southern Italy). Landslides 11:779–792. doi:10.1007/s10346-013-0395-3 CrossRefGoogle Scholar
  5. Cazelles B, Chavez M, Berteaux D, Ménard F, Vik J, Jenouvrier S, Stenseth N (2008) Wavelet analysis of ecological time series. Oecologia 156:287–304. doi:10.1007/s00442-008-0993-2 CrossRefGoogle Scholar
  6. Chai B, Yin K, Du J, Xiao L (2013) Correlation between incompetent beds and slope deformation at Badong town in the three Gorges reservoir, China. Environ Earth Sci 69:209–223. doi:10.1007/s12665-012-1948-9 CrossRefGoogle Scholar
  7. Chen S, Chen G-J, Xu G-L (2008) Mechanism of geological processes of formation and deformation of the Huangtupo landslide. Earth Sci J Chin Univ Geosci 33:411Google Scholar
  8. Cojean R, Caï Y (2011) Analysis and modeling of slope stability in the Three-Gorges dam reservoir (China)—the case of Huangtupo landslide. J Mount Sci 8:166–175. doi:10.1007/s11629-011-2100-0 CrossRefGoogle Scholar
  9. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (special report). National Research Council, Transportation and Research Board Special Report, Washington, DC, pp 36–75Google Scholar
  10. Deng QL, Zhu ZY, Cui ZQ, Wang XP (2000) Mass rock creep and landsliding on the Huangtupo slope in the reservoir area of the three Gorges project, Yangtze river, China. Eng Geol 58:67–83CrossRefGoogle Scholar
  11. Du J, Yin K, Lacasse S (2013) Displacement prediction in Colluvial landslides, three Gorges reservoir, China. Landslides 10:203–218. doi:10.1007/s10346-012-0326-8 CrossRefGoogle Scholar
  12. Fang Z, Hang D, Xinyi Z (2010) Rainfall regime in three Gorges area in China and the control factors. Int J Climatol 30:1396–1406. doi:10.1002/joc.1978 Google Scholar
  13. Gençay R, Selçuk F, Whitcher B (2001) Differentiating intraday seasonalities through wavelet multi-scaling. Physica A Stat Mech Appl 289:543–556. doi:10.1016/S0378-4371(00)00463-5 CrossRefGoogle Scholar
  14. Grinsted A, Moore JC, Jevrejeva S (2004) Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlin Proc Geophys 11:6CrossRefGoogle Scholar
  15. He K, Li X, Yan X, Guo D (2008) The landslides in the three Gorges reservoir region, China and the effects of water storage and rain on their stability. Environ Geol 55:55–63. doi:10.1007/s00254-007-0964-7 CrossRefGoogle Scholar
  16. He K, Wang S, Du W, Wang S (2010) Dynamic features and effects of rainfall on landslides in the three gorges reservoir region, China: using the Xintan landslide and the large Huangya landslide as the examples. Environ Earth Sci 59:1267–1274. doi:10.1007/s12665-009-0114-5 CrossRefGoogle Scholar
  17. Hooper A (2008) A multi-temporal insar method incorporating both persistent scatterer and small baseline approaches. Geophys Res Lett 35:1–5. doi:10.1029/2008gl034654
  18. Hu X, Tang H, Li C, Sun R (2012a) Stability of huangtupo riverside slumping mass ii# under water level fluctuation of three Gorges reservoir. J Earth Sci 23:326–334. doi:10.1007/s12583-012-0259-0 CrossRefGoogle Scholar
  19. Hu XL, Tang HM, Li CD, Sun RX (2012b) Stability of Huangtupo i# landslide under three gorges reservoir operation. Appl Mech Mater 170–173:8. doi:10.4028/www.scientific.net/AMM.170-173.1116 Google Scholar
  20. Jackson S, Sleigh A (2000) Resettlement for China’s three gorges dam: socio-economic impact and institutional tensions. Commun Post Commun Stud 33:223–241. doi:10.1016/s0967-067x(00)00005-2 CrossRefGoogle Scholar
  21. Jiang W-P, Huang B-Z, Ouyang H (2007) The monitoring technological method of landslide in Huangtupo. Resour Environ Eng 21:575–578Google Scholar
  22. Jiang J, Ehret D, Xiang W, Rohn J, Huang L, Yan S, Bi R (2011) Numerical simulation of Qiaotou landslide deformation caused by drawdown of the three Gorges reservoir, China. Environ Earth Sci 62:411–419. doi:10.1007/s12665-010-0536-0 CrossRefGoogle Scholar
  23. Jiao Y-Y, Song L, Tang H-M, Li Y-A (2014) Material weakening of slip zone soils induced by water level fluctuation in the ancient landslides of three Gorges reservoir. Advan Mater Sci Eng 2014:9. doi:10.1155/2014/202340 Google Scholar
  24. Jin Y, Wen-xing J, Hu-feng Y and Jiu-long Z (2012) Dynamic variation rule of phreatic line in Huangtupo landslide in the three gorges reservoir area. Rock Soil Mech 33:853–858Google Scholar
  25. Liu P, Li Z, Hoey T, Kincal C, Zhang J, Zeng Q, Muller J-P (2013) Using advanced insar time series techniques to monitor landslide movements in Badong of the three Gorges region, China. Int J Appl Earth Observ Geoinformat 21:253–264. doi:10.1016/j.jag.2011.10.010 CrossRefGoogle Scholar
  26. NOC (2014) Crosswavelet and wavelet coherence. National Oceanography Center. Http://noc.Ac.Uk/using-science/crosswavelet-wavelet-coherence. Accessed 20 May 2015
  27. Peng L, Xu S, Hou J, Peng J (2014) Quantitative risk analysis for landslides: the case of the three gorges area, China. Landslides. doi:10.1007/s10346-014-0518-5
  28. Singleton A, Li Z, Hoey T, Muller JP (2014) Evaluating sub-pixel offset techniques as an alternative to dinsar for monitoring episodic landslide movements in vegetated terrain. Remote Sensing of Environment 147:133-144. doi:10.1016/j.rse.2014.03.003
  29. Tang H, Hu X, Deng Q, Xiong C (2009) Research on the characteristics and slope deformation regularity of the Badong formation in the three Gorges reservoir area. In: Wang F, Li T (eds) Landslide disaster mitigation in three Gorges reservoir, China. Springer, Berlin, pp 87–113CrossRefGoogle Scholar
  30. Tang H, Li C, Hu X, Su A, Wang L, Wu Y, Criss R, Xiong C, Li Y (2014) Evolution characteristics of the Huangtupo landslide based on in situ tunneling and monitoring. Landslides. doi:10.1007/s10346-014-0500-2
  31. Tomás R, Li Z, Liu P, Singleton A, Hoey T, Cheng X (2014) Spatiotemporal characteristics of the Huangtupo landslide in the three Gorges region (China) constrained by radar interferometry. Geophys J Int 197:213–232. doi:10.1093/gji/ggu017 CrossRefGoogle Scholar
  32. Torrence C, Compo GP (1998) A practical guide to wavelet analysis. Bull Am Meteorol Soc 79:61–78. doi:10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2 CrossRefGoogle Scholar
  33. Tullos D (2009) Assessing the influence of environmental impact assessments on science and policy: an analysis of the three Gorges project. J Environ Manage 90(Supplement 3):S208–S223. doi:10.1016/j.jenvman.2008.07.031 CrossRefGoogle Scholar
  34. Wang F-W, Zhang Y-M, Huo Z-T, Matsumoto T, Huang B-L (2004) The July 14, 2003 Qianjiangping landslide, three Gorges reservoir, China. Landslides 1:157–162. doi:10.1007/s10346-004-0020-6 CrossRefGoogle Scholar
  35. Wang F, Zhang Y, Huo Z, Peng X, Araiba K, Wang G (2008) Movement of the Shuping landslide in the first four years after the initial impoundment of the three Gorges dam reservoir, China. Landslides 5:321–329. doi:10.1007/s10346-008-0128-1 CrossRefGoogle Scholar
  36. Wang X, Chen Y, Song L, Chen X, Xie H, Liu L (2013) Analysis of lengths, water areas and volumes of the three Gorges reservoir at different water levels using landsat images and srtm dem data. Quater Int 304:115–125. doi:10.1016/j.quaint.2013.03.041 CrossRefGoogle Scholar
  37. Wen B, Chen H (2007) Mineral compositions and elements concentrations as indicators for the role of groundwater in the development of landslide slip zones: a case study of large-scale landslides in the three Gorges area in China. Earth Sci Front 14:98–106. doi:10.1016/s1872-5791(08)60006-8 CrossRefGoogle Scholar
  38. Xia M, Ren G, Ma X (2013) Deformation and mechanism of landslide influenced by the effects of reservoir water and rainfall, three gorges, China. Nat Hazard 68:467–482. doi:10.1007/s11069-013-0634-x
  39. Xie L (2009) Complex geological characteristics and mechanism and control technical of landsliding of Huangtupo at three gorges reservoir. Dissertation, Wuhan University of TechnologyGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • R. Tomás
    • 1
  • Z. Li
    • 2
  • J. M. Lopez-Sanchez
    • 3
  • P. Liu
    • 4
  • A. Singleton
    • 2
  1. 1.Departamento de Ingeniería Civil, Escuela Politécnica SuperiorUniversidad de AlicanteAlicanteSpain
  2. 2.COMET, School of Civil Engineering and GeosciencesNewcastle UniversityNewcastle upon TyneUK
  3. 3.Instituto Universitario de Investigación InformáticaUniversidad de AlicanteAlicanteSpain
  4. 4.Key Laboratory for Geo-Environment Monitoring of Coastal Zone of the National Administration of Surveying, Mapping and Geo-Information, College of Information EngineeringShenzhen UniversityShenzhenChina

Personalised recommendations