, Volume 13, Issue 3, pp 519–536 | Cite as

The Rwenzori Mountains, a landslide-prone region?

  • Liesbet Jacobs
  • Olivier Dewitte
  • Jean Poesen
  • Damien Delvaux
  • Wim Thiery
  • Matthieu Kervyn
Original Paper


With its exceptionally steep topography, wet climate, and active faulting, landslides can be expected to occur in the Rwenzori Mountains. Whether or not this region is prone to landsliding and more generally whether global landslide inventories and hazard assessments are accurate in data-poor regions such as the East African highlands are thus far unclear. In order to address these questions, a first landslide inventory based on archive information is built for the Rwenzori Mountains. In total, 48 landslide and flash flood events, or combinations of these, are found. They caused 56 fatalities and considerable damage to road infrastructure, buildings, and cropland, and rendered over 14,000 persons homeless. These numbers indicate that the Rwenzori Mountains are landslide-prone and that the impact of these events is significant. Although not based on field investigations but on archive data from media reports and laymen accounts, our approach provides a useful complement to global inventories overlooking this region and increases our understanding of the phenomenon in the Rwenzori Mountains. Considering the severe impacts of landslides, the population growth and related anthropogenic interventions, and the likelihood of more intense rainfall conditions, there is an urgent need to invest in research on disaster risk reduction strategies in this region and other similar highland areas of Africa.


Mass movement Inventory Equatorial mountains Archive analysis Triggering factors 


  1. Akkermans T, Thiery W, van Lipzig N (2014) The regional climate impact of a future deforestation scenario in the Congo Basin. J Clim 27:2714–2734. doi:10.1175/JCLI-D-13-00361.1 CrossRefGoogle Scholar
  2. Bagoora F (1988) Soil erosion and mass wasting risk in the highland area of Uganda. Mt Res Dev 8:173–182CrossRefGoogle Scholar
  3. Bauer FU, Glasmacher UA, Ring U et al (2010) Thermal and exhumation history of the central Rwenzori Mountains, Western Rift of the East African Rift System, Uganda. Int J Earth Sci 99:1575–1597. doi:10.1007/s00531-010-0549-7 CrossRefGoogle Scholar
  4. Bauer FU, Karl M, Glasmacher UA et al (2012) The Rwenzori Mountains of western Uganda—aspects on the evolution of their remarkable morphology within the Albertine Rift. J Afr Earth Sci 73–74:44–56. doi:10.1016/j.jafrearsci.2012.07.001 CrossRefGoogle Scholar
  5. Brady NC, Weil RR (2008) The nature and properties of soils, 14th edn. Pearson Education Inc., New JerseyGoogle Scholar
  6. Brink AB, Bodart C, Brodsky L et al (2014) Anthropogenic pressure in East Africa—monitoring 20 years of land cover changes by means of medium resolution satellite data. Int J Appl Earth Obs Geoinf 28:60–69. doi:10.1016/j.jag.2013.11.006 CrossRefGoogle Scholar
  7. Bugoye sub-county local government (2014) Report on the disaster in Ibanda parish Bugoye sub-county caused by heavy rain, hailstones, wind storm and mudslides. Internal report, Kasese District, UgandaGoogle Scholar
  8. Chang K-T, Chiang S-H, Hsu M-L (2007) Modeling typhoon- and earthquake-induced landslides in a mountainous watershed using logistic regression. Geomorphology 89:335–347. doi:10.1016/j.geomorph.2006.12.011 CrossRefGoogle Scholar
  9. Che VB, Kervyn M, Ernst GGJ et al (2011) Systematic documentation of landslide events in Limbe area (Mt Cameroon Volcano, SW Cameroon): geometry, controlling, and triggering factors. Nat Hazards 59:47–74. doi:10.1007/s11069-011-9738-3 CrossRefGoogle Scholar
  10. CIESIN and CIAT (2005) Gridded population of the world, version 3 (GPWv3): population density grid. NASA Socioeconomic Data and Applications Center (SEDAC). Accessed 3 Jul 2014
  11. Claessens L, Knapen A, Kitutu MG et al (2007) Modelling landslide hazard, soil redistribution and sediment yield of landslides on the Ugandan footslopes of Mount Elgon. Geomorphology 90:23–35. doi:10.1016/j.geomorph.2007.01.007 CrossRefGoogle Scholar
  12. Corominas J, van Westen C, Frattini P et al (2014) Recommendations for the quantitative analysis of landslide risk. Bull Eng Geol Environ 73:209–263. doi:10.1007/s10064-013-0538-8 Google Scholar
  13. Crozier MJ (2010) Deciphering the effect of climate change on landslide activity: a review. Geomorphology 124:260–267. doi:10.1016/j.geomorph.2010.04.009 CrossRefGoogle Scholar
  14. Cui P, Zhou GGD, Zhu XH, Zhang JQ (2013) Scale amplification of natural debris flows caused by cascading landslide dam failures. Geomorphology 182:173–189. doi:10.1016/j.geomorph.2012.11.009 CrossRefGoogle Scholar
  15. Davies TC (1996) Landslide research in Kenya. J Afr Earth Sci 23:541–545CrossRefGoogle Scholar
  16. Davies TRH, Warburton J, Dunning SA, Bubeck AAP (2013) A large landslide event in a post-glacial landscape: rethinking glacial legacy. Earth Surf Process Landf 38:1261–1268. doi:10.1002/esp.3377 CrossRefGoogle Scholar
  17. Davin EL, Seneviratne SI (2012) Role of land surface processes and diffuse/direct radiation partitioning in simulating the European climate. Biogeosciences 9:1695–1707. doi:10.5194/bg-9-1695-2012 CrossRefGoogle Scholar
  18. Delvaux D, Barth A (2010) African stress pattern from formal inversion of focal mechanism data. Implications for rifting dynamics. Tectonophysics 482:105–128CrossRefGoogle Scholar
  19. Delvaux D, Macheyeki AS, Fernandes R-M, Ayele A, Meghraoui M (2015) Neotectonic faults and stress field in the East African Rift System around the Tanzanian Craton – A contribution to the seismotectonic map of Africa. Geophysical Research Abstracts, EGU General Assembly. Accessed 21 April 2015
  20. Department of Lands and Surveys, Uganda (1972). Topographic maps of Uganda Series Y732Google Scholar
  21. Dewitte O, Jones A, Spaargaren O et al (2013) Harmonisation of the soil map of Africa at the continental scale. Geoderma 211–212:138–153. doi:10.1016/j.geoderma.2013.07.007 CrossRefGoogle Scholar
  22. Eggermont H, Russell JM, Schettler G et al (2007) Physical and chemical limnology of alpine lakes and pools in the Rwenzori Mountains (Uganda–DR Congo). Hydrobiologia 592:151–173. doi:10.1007/s10750-007-0741-3 CrossRefGoogle Scholar
  23. Eggermont H, Van Damme K, Russell JM (2009) Rwenzori mountains (mountains of the moon): headwaters of the white Nile. In: Dumont HJ (ed) The Nile: origin, environments, limnology and human use. Springer, Netherlands, pp 243–261CrossRefGoogle Scholar
  24. El Morjani ZEA (2011) Methodology document for the WHO e-atlas of disaster risk. Volume 1. Exposure to natural hazards version 2.0, landslide hazard modelling. World Health Organization. Accessed 8 Jul 2014
  25. EM-DAT (2009) The OFDA/CRED International Disaster Database. Université Catholique de Louvain, Brussels, Accessed 5 Apr 2014Google Scholar
  26. Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128. doi:10.1016/0169-555X(94)90011-6 CrossRefGoogle Scholar
  27. FAO (2001) World soil resources reports 94. FAO. Accessed 20 Nov 2014
  28. FAO/IIASA/ISRIC/ISSCAS/JRC (2012) Harmonized world soil database (version 1.2). FAO, Rome, Italy and IIASA, Laxenburg, AustriaGoogle Scholar
  29. Garzanti E, Padoan M, Peruta L et al (2013) Weathering geochemistry and Sr-Nd fingerprints of equatorial upper Nile and Congo muds. Geochem Geophys Geosyst 14:292–316. doi:10.1002/ggge.20060 CrossRefGoogle Scholar
  30. Geonames (2014) GeoNames geographical database. Unxos GmbH. Accessed 1 Jun 2014
  31. Gill JC, Malamud BD (2014) Reviewing and visualizing the interactions of natural hazards. Rev Geophys. doi:10.1002/2013RG000445 Google Scholar
  32. Global Administrative Areas (2012) GADM database of global administrative areas, version 2.0. GADM. Accessed 2 Apr 2014
  33. Google (2014) Google Earth (version 7). Google. Accessed 15 Apr 2014
  34. Grosse P, van Wyk de Vries B, Euillades PA, Kervyn M, Petrinovic IA (2012) Systematic morphometric characterization of volcanic edifices using digital elevation models. Geomorphology 136:114–131. doi:10.1016/j.geomorph.2011.06.001 CrossRefGoogle Scholar
  35. GSHAP (2000) Global seismic hazard assessment program. Accessed 26 Feb 2015
  36. GTK Consortium (2012) New geological maps and geodatabases for Uganda. Mineral Wealth Conference 2012, Kampala Uganda. Accessed 25 Apr 2014
  37. Guzzetti F, Peruccacci S, Rossi M, Stark CP (2008) The rainfall intensity–duration control of shallow landslides and debris flows: an update. Landslides 5:3–17. doi:10.1007/s10346-007-0112-1 CrossRefGoogle Scholar
  38. Hong Y, Adler R (2008) Predicting global landslide spatiotemporal distribution: integrating landslide susceptibility zoning techniques and real-time satellite rainfall estimates. Int J Sediment Res 23:249–257. doi:10.1016/S1001-6279(08)60022-0 CrossRefGoogle Scholar
  39. Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256. doi:10.1007/s11069-006-9104-z CrossRefGoogle Scholar
  40. IPCC (2012) Managing the risks of extreme events and disasters to advance climate change adaptation. In: Field CB, Barros V, Stocker TF, Qin D, Dokken DJ, Ebi KL, Mastrandrea MD, Mach KJ, Plattner G-K, Allen SK, Tignor M, Midgley PM (eds) A special report of working groups I and II of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  41. Jagger P, Shively G (2014) Land use change, fuel use and respiratory health in Uganda. Energy Policy 67:713–726. doi:10.1016/j.enpol.2013.11.068 CrossRefGoogle Scholar
  42. Jarvis A, Reuter HI, Nelson A, Guevara E (2008) Hole-filled SRTM for the globe version 4, available from the CGIAR-CSI SRTM 90m Database. CGIAR-CSI. Accessed 20 Mar 2014
  43. Jones A, Breuning-Madsen H, Brossard M et al (2013) Soil atlas of Africa. European Commission, Publications Office of the European Union, LuxembourgGoogle Scholar
  44. Kaser G, Osmaston H (2002) Tropical glaciers. Cambridge University Press, CambridgeGoogle Scholar
  45. Kaufmann G, Romanov D (2012) Landscape evolution and glaciation of the Rwenzori Mountains, Uganda: insights from numerical modeling. Geomorphology 138:263–275. doi:10.1016/j.geomorph.2011.09.011 CrossRefGoogle Scholar
  46. Keefer DK (1984) Landslides caused by earthquakes. Geol Soc Am Bull 95:406–421CrossRefGoogle Scholar
  47. Keefer DK (2002) Investigating landslides caused by earthquakes—a historical review. Surv Geophys 23:473–510CrossRefGoogle Scholar
  48. Kervyn F, d’Oreye N, Haventith HB et al (2013) Geo-risk in Central Africa: integrating multi-hazards and vulnerability to support risk management. Geophysical Research Abstracts, EGU General Assembly. Accessed 21 May 2014
  49. Kirschbaum DB, Adler R, Hong Y et al (2010) A global landslide catalog for hazard applications: method, results, and limitations. Nat Hazards 52:561–575. doi:10.1007/s11069-009-9401-4 CrossRefGoogle Scholar
  50. Kitutu MG, Muwanga A, Poesen J, Deckers JA (2009) Influence of soil properties on landslide occurrences in Bududa district, Eastern Uganda. Afr J Agric Res 4:611–620Google Scholar
  51. Knapen A, Kitutu MG, Poesen J et al (2006) Landslides in a densely populated county at the footslopes of Mount Elgon (Uganda): characteristics and causal factors. Geomorphology 73:149–165. doi:10.1016/j.geomorph.2005.07.004 CrossRefGoogle Scholar
  52. Koehn D, Lindenfeld M, Rümpker G et al (2010) Active transsection faults in rift transfer zones: evidence for complex stress fields and implications for crustal fragmentation processes in the western branch of the East African Rift. Int J Earth Sci 99:1633–1642. doi:10.1007/s00531-010-0525-2 CrossRefGoogle Scholar
  53. Lindenfeld M, Rümpker G, Link K et al (2012a) Fluid-triggered earthquake swarms in the Rwenzori region, East African Rift—evidence for rift initiation. Tectonophysics 566–567:95–104. doi:10.1016/j.tecto.2012.07.010 CrossRefGoogle Scholar
  54. Lindenfeld M, Rümpker G, Batte A, Schumann A (2012b) Seismicity from February 2006 to September 2007 at the Rwenzori Mountains, East African Rift: earthquake distribution, magnitudes and source mechanisms. Solid Earth 3:251–264. doi:10.5194/se-3-251-2012 CrossRefGoogle Scholar
  55. Maasha N (1975) The seismicity and tectonics of Uganda. Tectonophysics 27:381–393CrossRefGoogle Scholar
  56. Mahango Sub-County Local Government (2013a) Disaster report which occurred on 25th sept 2013. Internal report, Kasese District, UgandaGoogle Scholar
  57. Mahango Sub-County Local Government (2013b) Submission of relief items distribution lists. Internal report, Kasese district, UgandaGoogle Scholar
  58. Mavonga T (2007) Some characteristics of aftershock sequences of major earthquakes from 1994 to 2002 in the Kivu province, Western Rift Valley of Africa. Tectonophysics 439:1–12. doi:10.1016/j.tecto.2007.01.006 CrossRefGoogle Scholar
  59. Mugagga F, Kakembo V, Buyinza M (2012) Land use changes on the slopes of Mount Elgon and the implications for the occurrence of landslides. Catena 90:39–46. doi:10.1016/j.catena.2011.11.004 CrossRefGoogle Scholar
  60. Nadim F, Kjekstad O, Peduzzi P et al (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. doi:10.1007/s10346-006-0036-1 CrossRefGoogle Scholar
  61. Parliament of Uganda (2010) Report of the parliament meeting of Wednesday, 10 March 2010. Accessed 26 Jun 2014
  62. Petley DN (2012) Global patterns of loss of life from landslides. Geology 40:927–930. doi:10.1130/G33217.1 CrossRefGoogle Scholar
  63. Ring U (2008) Extreme uplift of the Rwenzori Mountains in the East African Rift, Uganda: structural framework and possible role of glaciations. Tectonics. doi:10.1029/2007TC002176 Google Scholar
  64. Roller S, Wittmann H, Kastowski M, Hinderer M (2012) Erosion of the Rwenzori Mountains, East African Rift, from in situ-produced cosmogenic 10Be. J Geophys Res 117, F03003. doi:10.1029/2011JF002117 CrossRefGoogle Scholar
  65. Ronan KR, Johnston DM, Finnis K (2005) Promoting resilience: response. In: Ronan KR, Johnston DM (eds) Promoting community resilience in disasters, 1st edn. Springer, New York, pp 105–116Google Scholar
  66. Sansa JO, Waisswa M (2012) On improvement of the weather information management in Uganda. Proceedings and report of the 5th UbuntuNet Alliance annual conference. Accessed 1 Jul 2014
  67. Sidle RC, Ochiai H (2006) Landslides: processes, prediction, and land use. American Geophysical Union, Washington DCCrossRefGoogle Scholar
  68. Sidle RC, Pearce AJ, O’Loughlin CL (1985) Hillslope stability and land use. American Geophysical Union, Washington D.CCrossRefGoogle Scholar
  69. Simmons WC (1930) Local earth tremors recorded in February and March connected with an epicenter near Rwenzori. Geol. Surv. Dept. Uganda, Ann. Rep. for 1929:33–37Google Scholar
  70. Statoids (2013) Administrative divisions of countries. Accessed 15 Apr 2014
  71. Swanson FJ, Dyrness CT, Service UF et al (1975) Impact of clear-cutting and road construction on soil erosion by landslides in the western Cascade Range, Oregon. Geology 7:393–396CrossRefGoogle Scholar
  72. Taylor RG, Mileham L, Tindimugaya C, Mwebembezi L (2009) Recent glacial recession and its impact on alpine riverflow in the Rwenzori Mountains of Uganda. J Afr Earth Sci 55:205–213. doi:10.1016/j.jafrearsci.2009.04.008 CrossRefGoogle Scholar
  73. Temple PH, Rapp A (1972) Landslides in the Mgeta Area, Western Uluguru Mountains, Tanzania. Geogr Ann Ser A Phys Geogr 54:157–193. doi:10.2307/520764 CrossRefGoogle Scholar
  74. Thiery W, Davin E, Panitz H-J, Demuzere M, Lhermitte S, van Lipzig N (2015) The impact of the African Great Lakes on the regional climate. J Climate. doi:10.1175/JCLI-D-14-00565.1
  75. Uganda Bureau of Statistics (2003) Uganda national household survey 2002/2003. Ministry of Finance, Planning and Economic Development, Uganda. Accessed 27 Jun 2014
  76. UNESCO (1966) Earthquake reconnaissance mission, Uganda, the Toro earthquake of 20 March 1966. UNESCO. Accessed 25 Apr 2014
  77. USGS (2010) Significant earthquakes of the world, 1994. United States Geological Survey. Accessed 20 Mar 2014
  78. USGS (2014a) Shuttle radar topography mission, 1 Arc second scenes SRTM1N00E030V3, SRTM1N00E029V3, SRTM1S01E030V3, SRTM1S01E029V3, Unfilled Unfinished, Global Land Cover Facility, University of Maryland, College Park, Maryland, February 2000Google Scholar
  79. USGS (2014b) Significant earthquake archive. Earthquake hazard program. Accessed 4 Dec 2014
  80. Vagen TG (2010) Africa Soil Information Service: hydrologically corrected / adjusted SRTM DEM (AfrHySRTM). Nairobi, Kenya and Palisades, NY: International Center for Tropical Agriculture - Tropical Soil Biology and Fertility Institute (CIAT-TSBF), World Agroforestry Centre (ICRAF), Center for International Earth Science Information Network (CIESIN), Columbia University. Accessed 12 Jul 2014
  81. Van Den Eeckhaut M, Poesen J, Hervas J (2013) Mass-movement causes: overloading. In: Schroder JF (ed) Treatise on geomorphology, vol 7, mountain and hillslope geomorphology. Academic, San Diego, pp 200–206CrossRefGoogle Scholar
  82. Willmott CJ, Feddema JJ (1992) A more rational climatic moisture index. Prof Geogr 44:84–88CrossRefGoogle Scholar
  83. World Health Organization (2011) The WHO e-atlas of disaster risk for the African Region, volume 1: exposure to natural hazards version 2.0. World Health Organization, Regional Office for Africa. Accessed 15 Jun 2014

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Liesbet Jacobs
    • 1
    • 2
  • Olivier Dewitte
    • 2
  • Jean Poesen
    • 3
  • Damien Delvaux
    • 2
  • Wim Thiery
    • 3
  • Matthieu Kervyn
    • 1
  1. 1.Department of Geography, Earth System ScienceVrije Universiteit BrusselBrusselsBelgium
  2. 2.Department of Earth SciencesRoyal Museum for Central AfricaTervurenBelgium
  3. 3.Department of Earth and Environmental SciencesKU LeuvenLeuven-HeverleeBelgium

Personalised recommendations