, Volume 13, Issue 2, pp 259–277 | Cite as

Characterisation and spatial distribution of gravitational slope deformation in the Upper Rhone catchment (Western Swiss Alps)

  • Andrea Pedrazzini
  • Florian Humair
  • Michel Jaboyedoff
  • Marj Tonini
Original Paper


The influence of gravitational slope deformation (GSD) on erosion rates and the shape of mountain belts has been identified worldwide, particularly in valleys affected by glacial retreat. However, due to a lack of understanding about the main predisposing factors influencing their spatial distribution, size and failure mechanisms, the effective impact of GSD on the evolution of the landscape remains difficult to quantify. This study presents the first detailed, regional-scale GSD inventory of the entire Upper Rhone catchment (western Switzerland). The detection and mapping of GSD are performed by combining different remote sensing approaches. Moreover, we propose a detailed characterisation of GSD, taking into account geometry, morphology and failure mechanisms. Based on these analyses, more than 300 GSD are identified, corresponding to 11 % of the entire study area. Spatial and statistical analyses indicate that GSD are not uniformly distributed across the study area: six GSD clusters are highlighted, containing more than 80 % of the GSD events detected. Our observations suggest that the distribution of GSDs is primarily related to coexisting active tectonic processes (including high uplift gradients and earthquake activity) and pre-existing regional-scale, tectonic weakness zones. The region’s lithological and structural conditions, on the other hand, appear largely to influence the failure mechanisms and the sizes of the GSD detected.


Swiss Alps Slope deformation Inventory Spatial Cluster distribution Predisposing factors 


  1. Abele G. (1974) Bergstürze in den Alpen-ihre Verbritung, Morphologie und Folge erschinungen, Wissenschflitche Aplenvereinhefte, 25Google Scholar
  2. Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59:83–102CrossRefGoogle Scholar
  3. Agliardi, F., Zanchi, A., Crosta, G. (2009) Tectonic vs. gravitational morphostructures in the central Eastern Alps (Italy): constraints on the recent evolution of the mountain range, Tectonophysics, 474, 250-270Google Scholar
  4. Antinao JL, Gosse J (2009) Large rockslides in the Southern Central Andres of Chile (32-34.5°S): tectonic control and significance for quaternary landscape evolution. Geomorphology 104:117–133CrossRefGoogle Scholar
  5. Baddeley A, Moller J, Waagepetersen R (2000) Non- and semiparametric estimation of interaction in inhomogeneous point patterns. Stat Neerl 54:329–350CrossRefGoogle Scholar
  6. Ballantyne CK (2002) Paraglacial geomorphology. Quat Sci Rev 21:1935–2017CrossRefGoogle Scholar
  7. Besag J (1977) Discussion of Dr Ripley’s paper. J Roy Stat Soc B 39:193–195Google Scholar
  8. Besson O, Rouiller J-D, Frei W, Masson H (1992) Campagne de sismique-réflexion dans la Vallée du Rhone entre Sion et Martigny. Bull Murithienne 109:45–63Google Scholar
  9. Burbank DW, Leland J, Fielding E, Anderson RS, Brozovic N, Mary R, Duncan C (1996) Bedrock incision, rock uplift and threshold hillslopes in the northwestern Himalayas. Nature 379:505–510CrossRefGoogle Scholar
  10. Burri M. (1997) Géologie récente de Finges et dpses environs, Bulletin de la MaurithienneGoogle Scholar
  11. Cendrero A, Dramis F (1996) The contribution of landslides to landscape evolution in Europe. Geomorphology 15:191–211CrossRefGoogle Scholar
  12. Champagnac JD, Sue C, Delacou B, Burkhard M (2003) Brittle orogen-parallel extension in the internal zones of the Swiss Alps (south Valais), Eclogae Geol Helv 96:325–338Google Scholar
  13. Chaytor JD, ten Brink US, Solow AR, Andrews BD (2009) Size distribution of submarine landslides along the U.S. Atlantic margin. Mar Geol 264:16–27CrossRefGoogle Scholar
  14. Clarke BA, Burbank DW (2010) Bedrock fracturing, threshold hillslopes and limits to the magnitude of bedrock landslide. Earth Planet Sci Lett 297:577–585CrossRefGoogle Scholar
  15. Cossart E, Braucher R, Fort M, Bourlès DL, Carcaillet J (2008) Slope instability in relation to glacial debuttressing in alpine areas (Upper Durance catchment, southeastern France): evidence from field data and 10Be cosmic ray exposure ages. Geomorphology 95:3–26CrossRefGoogle Scholar
  16. Crosta GB, Frattini P, Agliardi F (2013) Deep seated gravitational slope deformations in the European Alps. Tectonophysics 605:13–33CrossRefGoogle Scholar
  17. Crozier MJ (2010) Landslide geomorphology: an argument for recognition, with examples from New Zealand. Geomorphology 120:3–15CrossRefGoogle Scholar
  18. De Kemp A (1998) Three-dimensional projection of curvilinear geological features through direction cosine interpolation of structural field observations. Comput Geosci 24:269–284CrossRefGoogle Scholar
  19. Delacou B, Sue C, Champagnac JD, Burkhard M (2004) Present-day geodynamics in the bend of the Western and Central Alps as constrained by earthquake analysis. Geophys J Int 158:753–774CrossRefGoogle Scholar
  20. Dramis F, Sorriso-Valvo M (1994) Deep-seated gravitational slope deformations, related landslides and tectonics. Eng Geol 38:231–243CrossRefGoogle Scholar
  21. Eisbacher G.H., Clague J.J. (1984) Destructive mass movements in high mountains. Geological Survey of Canada, Paper 84-16.Google Scholar
  22. Escher A, Beaumont C (1997) Formation, burial and exhumation of basement nappes at crustal scale: a geometric model based on the Western Swiss-Italian Alps. J Struct Geol 19:955–974CrossRefGoogle Scholar
  23. Evans SG, Clague JJ (1994) Recent climatic change and catastrophic geomorphic processes in mountain environments. Geomorphology 10:107–128Google Scholar
  24. Fäh D., Giardini D., Kästli P., Deichmann N., Gisler M., Schwarz-Zanetti G., Alvarez-Rubio S., Sellami S., Edwards B., Allmann B., Bethmann F., Wössner J., Gassner-Stamm G., Fritsche S., Eberhard D. (2011) ECOS-09 earthquake catalogue of Switzerland release 2011 report and database. Public catalogue, 17 April 2011. Swiss Seismological Service ETH Zurich, Report SED/RISK/R/001/20110417Google Scholar
  25. Fitzsimons SJ, Veit H (2001) Geology and geomorphology of the European Alps and the Southern Alps of New Zealand: a comparison. Mt Res Dev 21(4):340–349CrossRefGoogle Scholar
  26. Florineth D, Schlüchter C (1998) Reconstructing the last glacial maximum (LGM) ice surface geometry and flowlines in the Central Swiss Alps. Eclogae Geol Helv 91:391–407Google Scholar
  27. Forcella F, Orombelli G (1984) Holocene slope deformations in Valfurva, Central Alps, Italy. Geografia Fisica e Dinamica Quaternaria 7:41–48Google Scholar
  28. Fritsche S., Fäh D., Gisler M. Giardini D. (2006) Reconstructing the damage field of the 1855 earthquake in Switzerland: historical investigations on a well-documented event. Geophys J Int 166:719–731Google Scholar
  29. Ghirotti M, Martin S, Genovois R (2011) The Celentino deep-seated gravitational slope deformation (DSGSD): structural and geomechanical analyses (Peio Valley, NE Italy). Geological Society Special Publications. In: Jaboyedoff M (ed) Slope tectonics, vol 351. Geological Society, London, pp 235–252Google Scholar
  30. Gisler M, Fäh D, Kästli P (2004) Historical seismicity in Central Switzerland. Eclogae Geol Helv 97:221–236CrossRefGoogle Scholar
  31. Gutenberg B, Richter CF (1954) Seismicity of the earth and associated phenomena. Princeton University Press, Princeton, 245 pGoogle Scholar
  32. Guthrie RH, Evans SG (2004) Analysis of landslide frequencies and characteristics in a natural system, coastal British Columbia. Earth Surf Process Landf 29:1321–1339CrossRefGoogle Scholar
  33. Hancox, G.T., Cox, S.C., Turnbull, I.M., Crozier, M.J. (2003) Reconnaissance studies of landslides and other ground damage caused by the Mw 7.2 Fiordland earthquake of 22 August 2003, Institute of Geological and Nuclear Sciences Science Report 2003/30, Lower HuttGoogle Scholar
  34. Heim A (1932) Bergsturz und Menschenleben. Fretz und Wasmuth, ZürichGoogle Scholar
  35. Hermanns RL, Niedermann S, Villanueva Garcia A, Sosa Gomez J, Strecker MR (2001) Neotectonics and catastrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentina. Geology 29:619–623CrossRefGoogle Scholar
  36. Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34:1165–1186CrossRefGoogle Scholar
  37. Hovius N, Stark CP, Allen PA (1997) Sediment flux from a mountain belt derived by landslide mapping. Geology 25:231–234CrossRefGoogle Scholar
  38. Hutchinson J. N. (1988) General report: morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard C (ed) Proceedings of the Fifth International Symposium on Landslides, Balkema, Rotterdam, pp 3–35Google Scholar
  39. Ivy-Ochs S, Schäfer J, Kubik PW, Synal H-A, Schlüchter C (2004) Timing ofdeglaciation on the northern Alpine foreland (Switzerland). Eclogae Geol Helv 97:47–55CrossRefGoogle Scholar
  40. Jaboyedoff M, Derron M (2005) A new method to estimate the infilling of alluvial sediment of glacial valleys using a sloping local base level. Geografica Fisica e Dinamica Quaternaria 28:37–46Google Scholar
  41. Jaboyedoff M, Baillifard F, Derron M-H (2003) Preliminary note on uplift rates gradient, seismic activity and possible implications for brittle tectonics and rockslide prone areas: the example of western Switzerland. Bull Soc Vaud Sc nat 88:393–412Google Scholar
  42. Jaboyedoff M, Derron MH, Manby GM (2005) Note on seismic hazard assessment using gradient of uplift velocities in the Turan block (Central Asia). Nat Hazard Earth Syst Sci 5:43–47CrossRefGoogle Scholar
  43. Jarman D (2006) Large rock slope failures in the highlands of Scotland: characterisation, causes and spatial distribution. Eng Geol 83:161–182CrossRefGoogle Scholar
  44. Johnson NL, Kotz S, Balakrishnan N (1994) Continuous univariate distributions, vol 2. Wiley, New YorkGoogle Scholar
  45. Kahle HG, Geiger A, Buerki B, Gubler E, Marti U, Wirth B, Rothacher M, Gurtner W, Beutler G, Bauersima I, Pfiffner OA (1997) Recent crustal movements, geoid and density distribution; contribution from integrated satellite and terrestrial measurements. In: Pfiffner OA, Lehner P, Heitzmann P, Mueller S, Steck A (eds) Deep structure of the Swiss Alps: results of NRP20. Birkhäuser, Verlag, pp 251–259Google Scholar
  46. Kastrup U., Zoback M. L., Deichmann N., Evans K., Giardini D., Michael A. J. (2004) Stress field variations in the Swiss Alps and the northern Alpine foreland derived from inversions of fault plane solutions. J. Geophys. Res., 109/B1, B01402Google Scholar
  47. Keefer DK (1993) The susceptibility of rock slopes to earth-quake induced failure. Assoc Eng Geol Bull 30:353–361Google Scholar
  48. Kelly MA, Buoncristiani JF, Schlüchter C (2004) A reconstruction of the last glacial maximum (LGM) ice-surface geometry in the western Swiss Alps and contiguous Alpine regions in Italy and France. Eclogae Geol Helv 97:57–75CrossRefGoogle Scholar
  49. Korup O (2005) Distribution of landslides in southwest New Zealand. Landslides 1:43–51CrossRefGoogle Scholar
  50. Korup O, Schlunegger F (2007) Bedrock landslides, river incision, and transience of geomorphic hillslope-channel coupling: evidence from inner gorges in the eastern Swiss Alps. J Geophys Res 112:F03027Google Scholar
  51. Korup O, Clague JJ, Hermanns RL, Hewitt K, Strom AL, Weidinger JT (2007) Giant landslides, topography, and erosion. Earth Planet Sci Lett 261:578–589CrossRefGoogle Scholar
  52. Kreysig E. (1999) Advanced engineering mathematics, 8th edn. Wiley & Sons, New York, 1056 pGoogle Scholar
  53. Kühni A, Pfiffner OA (2001) The relief of the Swiss Alps and adjacent areas and its relation to lithology and structure: topographic analysis from a 250 m DEM. Geomorphology 41:285–307CrossRefGoogle Scholar
  54. Lemoine M, Bas T, Arnaud-Vanneau A, Arnaud H, Dumont T, Gidon M, Bourbon M, Graciansky PC, Rudkiewicz JL, Mégard-Galli J, Tricart P (1986) The continental margin of the Mesozoic Tethys in the Western Alps. Mar Pet Geol 3:179–199CrossRefGoogle Scholar
  55. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Process Landform 29:687–711CrossRefGoogle Scholar
  56. Mancktelow NS (1992) Neogene lateral extension during convergence in the Central Alps; evidence from interrelated faulting and backfolding around the Simplonpass; Switzerland. Tectonophysics 215:295–317CrossRefGoogle Scholar
  57. Masson H., Herb R., Steck A. (1980) Helvetic Alps of Western Switzerland, excursion no. 1. In: Trümpy, R.: Geology of Switzerland, part II—Wepf, Basel. Mancktelow N. S. 1990: The Simplon Fault Zone, Beitr. Geol. Karte CH 163 (n.F.), 74 pGoogle Scholar
  58. Maurer H, Burkhard M, Deichmann N, Green AG (1997) Active tectonism in the Central Alps: contrasting stress regimes north and south of the Rhone Valley. Terra Nova 9:91–94CrossRefGoogle Scholar
  59. Meentemeyer RK, Moody A (2000) Automated mapping of alignment between topography and geologic bedding planes. Comput Geosci 26:815–829CrossRefGoogle Scholar
  60. Molnar P, Anderson RS, Anderson SP (2007) Tectonics, fracturing of rock, and erosion. J Geophys Res 112:F03014Google Scholar
  61. Montandon F (1933) Chronologie des grands éboulements alpins, du début de l’ère chrétienne à nos jours. Socité géographique Génève matériaux pour l’étude des calamités 32:271–340Google Scholar
  62. Montgomery DR, Brandon MT (2002) Topographic controls on erosion rates in tectonically active mountain ranges, Earth Planet. Sci Lett 201:481–489Google Scholar
  63. Mosar J, Stampfli GM, Girod F (1996) Western Préalpes Médianes Romandes: timing and structure: a review. Eclogae Geol Helv 89:389–425Google Scholar
  64. Noverraz F. (1990) Répartition géographique, origine et contexte géologique des glissements de terrains latents en Suisse, Hydrology in Mountainous Regions. Artificial Reservoirs; Water and Slopes (Proceedings of two Lausanne Svmposia, August 1990). IAHS Publ. no. 194Google Scholar
  65. Pedrazzini A. (2012) Characterization of gravitational rock slope deformations at different spatial scales based on field, remote sensing and numerical approaches. PhD thesis, Institute of Geomatics and Risk Analysis, University of Lausanne, 327 ppGoogle Scholar
  66. Pedrazzini A., Jaboyedoff M., Ornstein P. (2009) Failure mechanisms analysis and reconstruction of pre-failure topography: examples of rockslide scars in Rhone valley, Switzerland. Geophysical Research Abstracts, 11, EGU2009-11934-2Google Scholar
  67. Pedrazzini A, Jaboyedoff M, Loye A, Derron M-H (2013) From deep seated slope deformation to rock avalanche: destabilization and transportation models of the Sierre landslide (Switzerland). Tectonophysics 605:149–168CrossRefGoogle Scholar
  68. Pfiffner O.A., Lehner P., Heitzmann P., Mueller St. and Steck A. (Eds.) 1997 Deep structure of the Swiss Alps: results of NRP 20. Birkhäuser Verlag, 380 ppGoogle Scholar
  69. Preusser F, Reitner JM, Schlüchter C (2010) Distribution, geometry, age and origin of overdeepened valleys and basins in the Alps and their foreland. Swiss J Geosci 3:407–426CrossRefGoogle Scholar
  70. Reitner JM, Linner M (2009) Formation and preservation of large scale toppling related to alpine tectonic structures-eastern Alps. Austria J Earth Sci 120:69–80Google Scholar
  71. Ripley BD (1977) Modelling spatial patterns (with discussion). J R Stat Soc Ser B 39:172–212Google Scholar
  72. Ripley BD (1988) Statistical inference for spatial processes. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  73. Rosselli A, Olivier R (2003) Modélisation gravimétrique 2.5D et cartes des isohypses au 1:100’000 du substratum rocheux de la Vallée du Rhone entre Villeneuve et Brig (Suisse). Eclogae Geol Helv 96:399–423Google Scholar
  74. Sanchez G, Rolland Y, Corsini M, Braucher R, Bourlès D, Arnold M, Aumaître G (2010) Relationships between tectonics, slope instability and climate change: cosmic ray exposure dating of active faults, landslides and glacial surfaces in the SW Alps. Geomorphology 117:1–13CrossRefGoogle Scholar
  75. Sartori M (1987) Blocs basculés briançonnais en relation avec leur socle originel dans la nappe de Siviez-Mischabel (Valais, Suisse). Comptes Rendus des Séances de l’Académie des Sciences de Paris 305:999–1005Google Scholar
  76. Schlatter A., (2007) Das neue Landeshöhennetz der Schweiz LHN95; Geodätisch-geophysikalischeArbeiten in der Schweiz: Schweizerische Geodätische Kommission, v. 72, 373 pGoogle Scholar
  77. Schlatter A, Schneider D, Geiger A, Kahle H (2005) Recent vertical movements from precise levelling in the vicinity of the city of Basel, Switzerland. Int J Earth Sci 94:507–514CrossRefGoogle Scholar
  78. Schmidt KM, Montgomery DR (1995) Limits to relief. Science 70:617–620CrossRefGoogle Scholar
  79. Schoneich P, Dorthe-Monachon C, Jaillet S, Ballandras S (1998) Le retrait glaciaire dans les Préalpes et les Alpes au Tardiglaciaire. Bull d’Ét Préhist et alpines de la vallée d’Aoste 9:23–37Google Scholar
  80. Sengezer B, Ansal A (2007) Probabilistic evaluation of observed earthquake damage data in Turkey. Nat Hazards 40:305–326CrossRefGoogle Scholar
  81. Silverman BW (1986) Density estimation for statistics and data analysis. Chapman and Hall, New YorkCrossRefGoogle Scholar
  82. Steck A (1984) Structures et deformations tertiaries dans les Alpes centrales. Eclogae Geol Helv 77:55–100Google Scholar
  83. Steck A, Hunziker J (1994) The Tertiary structural and thermal evolution of the Central Alps; compressional and extensional structures in an orogenic belt. Tectonophysics 238:229–254CrossRefGoogle Scholar
  84. Steck A., Bigioggero B., Dal Piaz G.V., Escher A., Martinotti G., Masson H. (1999) Carte tectonique des Alpes de Suisse occidentales et des régions avoisinantes, 1:100000 [Tectonic map of the western Swiss Alps and neighbouring regions]. Special geological map no. 123, Service Géologique National, BernGoogle Scholar
  85. Steck A, Epard JL, Escher A, Gouffon Y, Masson H (2001) Carte tectonique des Alpes de Suisse occidentale et des regions avoisinantes 1:100000. Notice explicative [Tectonic map of the western Swiss Alps and neighbouring regions, explanatory note]. Service Géologique National, Bern, 73 ppGoogle Scholar
  86. Sue C, Touvenout F, Frechet J, Tricart P (1999) Widespread extension in the core of the Western Alps revealed by earthquake analysis. J Geophys Res B 104(11):25611–25622CrossRefGoogle Scholar
  87. Sue C, Delacou B, Champagnac J-D, Allanic C, Tricart P, Burkhard M (2007) Extensional neotectonics around the bend of the Western/Central Alps: an overview. Int J Earth Sci 6:1101–1129CrossRefGoogle Scholar
  88. Tonini M, Pedrazzini A, Penna I, Jaoboyedoff M (2014) Spatial pattern of landslides in Swiss Rhone Valley. Nat Hazards. doi:10.1007/s11069-012-0522-9 Google Scholar
  89. Ustaszewski M., Pfiffner O. A. (2008) Neotectonic faulting, uplift and seismicity in the Central and Western Swiss Alps. In S. Sigmund et al. (Eds.), Tectonic aspects of the Alpine–Carpathian–Dinaride system. Geological Society of London Special Publication, 298, 231–249Google Scholar
  90. Van Den Eeckaut M, Poesen J, Govers G, Verstraeten G, Demoulin A (2007) Characteristics of the size distribution of recent and historical landslides in a populated hilly region. Earth Planet Sci Lett 256:588–603CrossRefGoogle Scholar
  91. Vernon AJ, van der Beek PA, Sinclair HD (2009) Spatial correlation between long-term exhumation rates and present-day forcing parameters in the western European Alps. Geology 37:859–862CrossRefGoogle Scholar
  92. Zischinsky U (1969) Uber Sackungen. Rock Mech 1:30–52CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Andrea Pedrazzini
    • 1
  • Florian Humair
    • 2
  • Michel Jaboyedoff
    • 2
  • Marj Tonini
    • 3
  1. 1.Canton of JuraOffice cantonal de l’environnementSaint-UrsanneSwitzerland
  2. 2.University of LausanneInstitute of Earth SciencesLausanneSwitzerland
  3. 3.University of LausanneInstitute of Earth Surface DynamicsLausanneSwitzerland

Personalised recommendations