Landslides

, Volume 12, Issue 3, pp 495–510 | Cite as

Geomechanical assessment of the Corvara earthflow through numerical modelling and inverse analysis

  • W. Schädler
  • L. Borgatti
  • A. Corsini
  • J. Meier
  • F. Ronchetti
  • T. Schanz
Original Paper

Abstract

This research proposes a conceptual approach for analysis and numerical modelling of the hydromechanical behaviour of large landslides, applied to one of the source areas of the Corvara earthflow (Dolomites, Italy). The approach consists of two steps: forward calculation and inverse analysis. For the forward calculations, the geological model of the slope considering several shear zones delimitating landslide units was developed, based on a detailed dataset of field investigation and monitoring data. A viscoplastic constitutive model was used to describe the time-dependent material behaviour, i.e. the creep, of the shear zones. The transient distribution of pore water pressure in the slope was considered by means of an additional purely hydrogeological model. These results were used as averaged hydraulic boundary conditions in the calculation of stress and deformation fields with the continuum finite element method (FEM). The numerical model was then calibrated against ground surface displacement rates measured by D-GPS, by iteratively varying the material parameters of the shear zones. For this task, an inverse analysis concept was applied, based on statistical analyses and an evolutionary optimisation algorithm. The inverse modelling strategy was further applied to gather statistical information on model behaviour, on the sensitivity of model parameters and on the quality of the obtained calibration. Results show that the calibrated model was able to appropriately simulate the displacement field of the earthflow and allow the requirements, difficulties and problems, as well as the advantages and benefits of the proposed numerical modelling concept to be highlighted.

Keywords

Finite element method Numerical modelling Corvara earthflow Dolomites Italy 

References

  1. Angeli MG, Gasparetto P, Pasuto A, Silvano S, Menotti RM (1996a) Examples of mudslides on low-gradient clayey solpes. In: Senneset K (ed) Landslides, Proc. 7th Int. Symp. Landslides, Trondheim. Balkema, Rotterdam 1:141–145Google Scholar
  2. Angeli MG, Gasparetto P, Menotti RM, Pasuto A, Silvano S (1996b) A visco-plastic model for slope analysis applied to a mudslide in Cortina d’Ampezzo, Italy. Q J Eng Geol 29:233–240CrossRefGoogle Scholar
  3. Angeli MG, Buma J, Gasparetto P, Pasuto A (1998) A combined hillslope hydrology/stability model for low-gradient clay slopes in the Italian Dolomites. Eng Geol 49:1–13CrossRefGoogle Scholar
  4. Augustesen A, Liingaard M, Lade PV (2004) Evaluation of time-dependent behaviour of soils. Int J Geomech 4(3):137–156CrossRefGoogle Scholar
  5. Bonomi T, Cavallin A (1999) Three-dimensional hydrological modelling application to the Alverà mudslide (Cortina d’Ampezzo, Italy). Geomorphology 30:189–199CrossRefGoogle Scholar
  6. Borgatti L, Soldati M (2010) Landslides as a geomorphological proxy for climate change: a record from the Dolomites (Northern Italy). Geomorphology 120:56–64CrossRefGoogle Scholar
  7. Borgatti L, Corsini A, Marcato G, Pasuto A, Silvano S, Zabuski L (2007a) Numerical analysis of countermeasure works influence on earth slide stabilisation: a case study in South Tyrol (Italy). In: Proceedings of the First North American Landslide Conference (ed) Landslides and Society: Integrated Science, Engineering Management and Mitigation. AEG, Vail (USA) 23:1007–1015Google Scholar
  8. Borgatti L, Ravazzi C, Donegana M, Corsini A, Marchetti M, Soldati M (2007b) A lacustrine record of early Holocene watershed events and vegetation history, Corvara in Badia, Dolomites (Italy). J Quat Sci 22(2):173–189CrossRefGoogle Scholar
  9. Calvello M, Finno RJ (2004) Selecting parameters to optimize in model calibration by inverse analysis. Comput Geotech 31:411–425CrossRefGoogle Scholar
  10. Caris JPT, van Asch T (1991) Geophysical, geotechnical and hydrological investigations of a small landslide in the French Alps. Eng Geol 31(3–4):249–276CrossRefGoogle Scholar
  11. Cividini A, Jurina L, Gioda G (1981) Some aspects of characterization problems in Geomechanics. Int J Rock Mech Min Sci 18(6):487–503CrossRefGoogle Scholar
  12. Comegna L, Picarelli L, Urciuoli G (2007) The mechanics of mudslides as a cyclic undrained–drained process. Landslides 4(3):217–232CrossRefGoogle Scholar
  13. Corsini A (2000) L’influenza dei fenomeni franosi sull’evoluzione geomorfologica post-glaciale dell’Alta Val Badia e della Valparola (Dolomiti). Dissertation, Università di Bologna, ItalyGoogle Scholar
  14. Corsini A, Pasuto A, Soldati M (1999) Geomorphologicalinvestigation and management of the Corvara landslide (Dolomites, Italy). Trans Jpn Geomorphol Union 20:169–186Google Scholar
  15. Corsini A, Marchetti M, Soldati M (2001) Holoceneslopedynamics in the area of Corvara in Badia (Dolomites, Italy). Geografia Fisica e Dinamica Quaternaria 24:127–139Google Scholar
  16. Corsini A, Pasuto A, Soldati M, Zannoni A (2005) Field monitoring of the Corvara landslide (Dolomites, Italy) and itsrelevance for hazardassessment. Geomorphology 66:149–165CrossRefGoogle Scholar
  17. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (ed) Landslides: investigation and mitigation, Transportation Research Board. Special Report 247 National Academy Press, Washington D.CGoogle Scholar
  18. Duan QY, Sorooshian S, Gupta VK (1992) Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resour Res 28(4):1015–1031CrossRefGoogle Scholar
  19. Duan QY, Gupta VK, Sorooshian S (1993) Shuffled complex evolution approach for effective and efficient global minimization. J Optim Theory Appl 76(3):501–521CrossRefGoogle Scholar
  20. Duan QY, Sorooshian S, Gupta VK (1994) Optimal use of the SCE-UA global optimization method for calibrating watershed models. J Hydrol 158:265–284CrossRefGoogle Scholar
  21. Feng XT, Chen BR, Yang C, Zhou H, Ding X (2006) Identification of visco-elastic models for rocks using genetic programming coupled with the modified particle swarm optimization algorithm. Int J Rock Mech Min Sci 43:789–801CrossRefGoogle Scholar
  22. Finsterle S (2006) Demonstration of optimization techniques for groundwater plume remediation using iTOUGH2. Environ Model Softw 22:665–680CrossRefGoogle Scholar
  23. Francois B, Tacher L, Bonnard C, Laloui L, Triguero V (2007) Numerical modelling of the hydrogeological and geomechanical behaviour of a large slope movement: the Triesenberg landslide (Liechtenstein). Can Geotech J 44(7):840–857CrossRefGoogle Scholar
  24. Gens A, Ledesma A, Alonso EE (1996) Estimation of parameters in geotechnical backanalysis—II. Application to a tunnel excavation problem. Comput Geotech 18:29–46CrossRefGoogle Scholar
  25. Guzzetti F, Cardinali M, Reichenbach P (1994) The AVI project: a bibliographical and archive inventory of landslides and floods in Italy. Environ Manag 18(4):623–633CrossRefGoogle Scholar
  26. Hvorslev M (1949) Subsurface exploration and sampling of soils for civil engineering purposes. Report on soil sampling, U.S. waterways experiment station, Vicksburg, pp 521Google Scholar
  27. Krahn J (2004) Seepage modeling with SEEP/W. GEO-SLOPE International LtdGoogle Scholar
  28. Ledesma A, Gens A, Alonso EE (1996a) Estimation of parameters in geotechnical backanalysis—I. Maximum likelihood approach. Comput Geotech 18(1):1–27CrossRefGoogle Scholar
  29. Ledesma A, Gens A, Alonso EE (1996b) Parameter and variance estimation in geotechnical backanalysis using prior information. Int J Numer Anal Methods Geomech 20:119–141CrossRefGoogle Scholar
  30. Levasseur S, Malecot Y, Boulon M, Flavigny E (2008) Soil parameter identification using a genetic algorithm. Int J Numer Anal Methods Geomech 32:189–213CrossRefGoogle Scholar
  31. Malecot Y, Flavigny E, Boulon M (2004) Inverse analysis of soil parameters for finite element simulation of geotechnical structures: pressuremeter test and excavation problem. In: Brinkgreve RBJ, Schad H, Schweiger HF, Willand E (eds) Proc. Symp. GeotechnicalInnovations. Verlag Glückauf, Essen, pp 659–675Google Scholar
  32. Malet JP, Laigle D, Remaitre A, Maquaire O (2005) Triggering conditions and mobility of debris flows associated to complex earthflows. Geomorphology 66(1–4):215–235CrossRefGoogle Scholar
  33. Manly BFJ (1944) Multivariate statistical methods: a primer. 3rd Edition. Chapman & Hall, CRCGoogle Scholar
  34. Marcato G, Mantovani M, Pasuto A, Tagliavini F, Silvano S, Zabuski L (2009) Assessing the possible future development of the Tessina landslide using numerical modelling. In: Malet JP, Remaitre A, Bogaard T (eds) Landslide processes: from geomorphological mapping to dynamic modelling. CERG, Strasbourg, France, pp 327–334Google Scholar
  35. Marcato G, Mantovani M, Pasuto A, Zabuski L, Borgatti L (2012) Monitoring, numerical modelling and hazard mitigation of the Moscardo landslide (Eastern Italian Alps). Eng Geol 128:95–107CrossRefGoogle Scholar
  36. Meier J (2008) Parameterbestimmung mittels inverser Verfahren für geotechnische Problemstellungen. Dissertation.Bauhaus-Universität Weimar, GermanyGoogle Scholar
  37. Meier J, Rudolph S, Schanz T (2006) Effektiver Algorithmus zur Lösung von inversen Aufgabenstellungen. Bautechnik 83(7):470–481CrossRefGoogle Scholar
  38. Meier J, Schädler W, Borgatti L, Corsini A, Schanz T (2008) Inverse parameter identification technique using PSO algorithm applied to geotechnical modeling. Journal of Artificial Evolution and Applications, Article ID 574613, 14 pages, doi:10.1155/2008/574613
  39. Mesri G, Castro A (1987) Cα/CC concept and K0 during secondary compression. J Geotech Eng 112(3):230–247CrossRefGoogle Scholar
  40. Mesri G, Godlewski P (1977) Time- and stress-compressibility interrelationship. J Geotech Eng Div 103:417–430Google Scholar
  41. Panizza M, Silvano S, Corsini A, Soldati M, Marchetti M, Borgatti L, Ghinoi A, Piacentini D, Pasuto A, Zannoni A, Marcato G, Mantovani M, Tagliavini F, Moretto S (2006) Definizione della pericolosità e di possibili interventi di mitigazione della frana di Corvara in Badia. Provincia Autonoma di Bolzano, Südtirol. http://www.provinz.bz.it/wasserschutzbauten/download/Download_Corvara_RelazioneFinale_10-4-06_inviato.pdf (Accessed 18 Apr 2014)
  42. Picarelli L, Russo C, Urciuoli G (1995) Modelling earthflow movement based on experiences. In: Danish Geotechnical Society (ed) Proceedings of the 11th European conference on soil mechanics and foundation engineering, Copenhagen, 6:157–162Google Scholar
  43. Picarelli L, Di Maio C, Olivares L, Urciuoli G (2000) Properties and behaviour of tectonized clay shales in Italy. Keynote lecture, Proc. II Int. Symposium on Hard Soils and Soft Rocks, Napoli, Italy 1998, Balkema, Rotterdam, 1211–1242Google Scholar
  44. PLAXIS V8 (2003) Reference manual. In: Brinkgreve RBJ (in cooperation with: Al-Khoury R, Bakker KJ, Bonnier PG, Brand PJW, Broere W, Burd HJ, Soltys G, Vermeer PA, Vogt-Breier C, Waterman D, Den Haag DOC. Technical University of Delft and PLAXIS BV, The NetherlandsGoogle Scholar
  45. Schädler W (2008) Slope movements of the earthflow type—engineering-geological investigation, geotechnical assessment and modelling of the source areas on the basis of case studies from the Alps and Apennines. Dissertation at Friedrich-Alexander-Universität Erlangen-Nürnberg. Logos Verlag Berlin GmbH, pp 212Google Scholar
  46. Schanz T, Meier J (2008) Gestaltung, Validierung und Optimierung von Messprogrammen fur geotechnische Aufgabenstellungen. Bautechnik 85(5):307–316CrossRefGoogle Scholar
  47. Schanz T, Zimmerer MM, Datcheva M, Meier J (2006) Identification of constitutive parameters for numerical models via inverse approach. Felsbaumagazin 24(2):11–21Google Scholar
  48. Schwarz S (2001) Sensitivitäts analyse und Optimierung bei nicht linearen Strukturverhalten. Institute fürBaustatik, Universität Stuttgart, Bericht 34Google Scholar
  49. Soldati M, Corsini A, Pasuto A (2004) Landslides and climate change in the Italian Dolomites since the Late Glacial. Catena 55:141–161CrossRefGoogle Scholar
  50. Tacher L, Bonnard C, Laloui L, Parriaux A (2005) Modelling the behaviour of a large landslide with respect to hydrogeological and geomechanical parameter heterogeneity. Landslides 2(1):3–14CrossRefGoogle Scholar
  51. Thornthwaite CW (1948) An approach toward a rational classification of climate. Geogr Rev 38:55–94CrossRefGoogle Scholar
  52. Trigila A, Iadanza C, Spizzichino D (2010) Quality assessment of the Italian Landslide Inventory using GIS processing. Landslides 7(4):455–470CrossRefGoogle Scholar
  53. van Asch T, van Beek LPH, Bogaard TA (2007) Problems in predicting the mobility of slow-moving landslides. Eng Geol 91:46–55CrossRefGoogle Scholar
  54. Vermeer PA, Neher HP (1999) A soft soil model that accounts for creep. In: Proceedings of the International Symposium (ed) Beyond 2000 in Computational Geotechnics—10 Years of PLAXIS International. Balkema, Amsterdam, pp 249–261Google Scholar
  55. Vulliet L, Bonnard C (1996) The Chlöwena landslide: prediction with a viscous model. In VIIth Int. Symp. on landslides. Trondheim 1:397–402Google Scholar
  56. Zhang ZF, Ward AL, Gee GW (2003) Estimating soil hydraulic parameters of a field drainage experiment using inverse techniques. Vadose Zone J 2:201–211CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • W. Schädler
    • 1
  • L. Borgatti
    • 2
  • A. Corsini
    • 3
  • J. Meier
    • 4
  • F. Ronchetti
    • 3
  • T. Schanz
    • 5
  1. 1.WPW Geoconsult Südwest GmbHMannheimGermany
  2. 2.Department of Civil, Chemical, Environmental and Materials Engineering DICAMALMA MATER STUDIORUM University of BolognaBolognaItaly
  3. 3.Department of Chemical and Geological Sciences DSCGUniversity of Modena and Reggio EmiliaModenaItaly
  4. 4.Department of Geotechnical EngineeringGruner AGBaselSwitzerland
  5. 5.Foundation Engineering, Soil and Rock Mechanics, Faculty of Civil and Environmental EngineeringRuhr-Universität BochumBochumGermany

Personalised recommendations