, Volume 11, Issue 4, pp 655–671 | Cite as

Integrated geophysical and morphostratigraphic approach to investigate a coseismic (?) translational slide responsible for the destruction of the Montclús village (Spanish Pyrenees)

  • M. Zarroca
  • R. Linares
  • C. Roqué
  • J. Rosell
  • F. Gutiérrez
Original Paper


A 12 million of m3 translational rockslide developed on a dip slope underlain by limestone with interlayered marls, and responsible for the destruction of the Montclús village in the fourteenth century, has been investigated by means of geomorphological and geophysical surveys. The combination of historical-geoarcheological, geomorphological, seismic refraction and electrical resistivity imaging datasets allowed the (1) reconstruction of the late Quaternary episodic evolution of the landslide, (2) characterization of the geometry and internal structure of the slid mass and (3) identification of preferential groundwater flow paths that favoured slope instability. The development of the landslide involved at least two different displacement episodes controlled by sliding surfaces at successively deeper stratigraphic positions. The first landsliding event, recorded by highly weathered landslide deposits situated above a perched failure plane, occurred approximately during the global Last Glacial Maximum (23–19 ka BP). The most recent event, which destroyed the Montclús village built on already slid rocks, is placed in the fourteenth century. Most probably, this reactivation event was triggered by the 1373 Ribagorza earthquake, with an estimated moment magnitude of M w 6.2. This work illustrates the benefits of combining geomorphological data with complementary geophysical technics in landslide investigation.


Deep-seated landslide Electrical resistivity imaging Seismic refraction Morphostratigraphy Earthquake-induced landslide Spain 



We would like to thank Dr. Davide Tiranti, anonymous reviewer and editor for their very constructive comments and insightful suggestions on the earlier version of this manuscript. This paper is a part of the PhD thesis by Mario Zarroca submitted to the Autonomous University of Barcelona. The research was financed by the Spanish Ministry of Education and Science (projects CGL2005-02404 and CGL2010-16775).


  1. Agnesi V, Camarda M, Conoscenti C, Di-Maggio C, Diliberto IS, Madonia P, Rotigliano E (2005) A multidisciplinary approach to the evaluation of the mechanism that triggered the Cerda landslide (Sicily, Italy). Geomorphology 65:101–116CrossRefGoogle Scholar
  2. Alberto W, Giardino M, Martinotti G, Tiranti D (2008) Geomorphological hazards related to deep dissolution phenomena in the Western Italian Alps: distribution, assessment and interaction with human activities. Eng Geol 99:147–159CrossRefGoogle Scholar
  3. Bordonau J, Vilaplana JM (1986) Géomorphologie et tectonique récente dans le Val d’Aran (zone axiale des Pyrénées Centrales, Espagne). Rev Geol Dyn Geog 27:303–310Google Scholar
  4. Brueckl E, Parotidis M (2001) Estimation of large-scale mechanical properties of a large landslide on the basis of seismic results. Int J Rock Mech Min 38:877–883CrossRefGoogle Scholar
  5. Caputo R, Salviulo L, Piscitelli S, Loperte A (2007) Late Quaternary activity along the Scorciabuoi fault (Southern Italy) as inferred from electrical resistivity tomographies. Ann Geophys 50:213–224Google Scholar
  6. Caris JPT, Van Asch TWJ (1991) Geophysical, geotechnical and hydrological investigations of a small landslide in the French Alps. Eng Geol 31:249–276CrossRefGoogle Scholar
  7. Chambers JE, Wilkinson PB, Kuras O, Ford JR, Gunn DA, Meldrum PI, Pennington CVL, Weller AL, Hobbs PRN, Ogilvy RD (2011) Three-dimensional geophysical anatomy of an active landslide in Lias Group mudrocks, Cleveland Basin, UK. Geomorphology 125:472–484CrossRefGoogle Scholar
  8. Chigira M, Yagi H (2006) Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan. Eng Geol 82:202–221CrossRefGoogle Scholar
  9. Copons R, Linares R, Cirés J, Tallada A (2010) The landslide inventory as the basis of susceptibility and hazard assessment. EGU General Assembly 2010, held 2–7 May, 2010 in Vienna, Austria, p. 14101Google Scholar
  10. Dahlin T, Zhou B (2004) A numerical comparison of 2D resistivity imaging with ten electrode arrays. Geophys Prospect 52:379–398CrossRefGoogle Scholar
  11. Del Gaudio V, Wasowski J (2011) Advances and problems in understanding the seismic response of potentially unstable slopes. Eng Geol 122:73–83CrossRefGoogle Scholar
  12. Delgado J, Peláez JA, Tomás R, García-Tortosa FJ, Alfaro P, López C (2011) Seismically-induced landslides in the Betic Cordillera (S Spain). Soil Dyn Earthq Eng 31:1203–1211CrossRefGoogle Scholar
  13. Dubos-Sallée N, Nivière B, Lacan P, Hervouët Y (2007) A structural model for the seismicity of the Arudy (1980) epicentral area (Western Pyrenees, France). Geophys J Int 171:259–270CrossRefGoogle Scholar
  14. Fazzito S, Rapalini A, Cortés JM, Terrizzano CM (2009) Characterization of Quaternary faults by electric resistivity tomography in the Andean Precordillera of Western Argentina. J South Am Earth Sci 28:217–228CrossRefGoogle Scholar
  15. García-Ruiz JM, Beguería S, Alatorre LC, Puigdefábregas J (2010) Land cover changes and shallow landsliding in the flysch sector of the Spanish Pyrenees. Geomorphology 124:250–259CrossRefGoogle Scholar
  16. Giles KA, Rowan MG (2012) Concepts in halokinetic-sequence deformation and stratigraphy. Geol Soc London Special Publ 363:7–31. doi: 10.1144/SP363.3 CrossRefGoogle Scholar
  17. Giner-Robles JL, Rodríguez-Pascua MA, Pérez-López R, Silva PG, Bardají T, Grützner C, Reicerter K (eds) (2009) Structural analysis of Earthquake Archaeological Effects (EAE): Baelo Claudia Examples (Cádiz, South Spain). In: 1st INQUA-IGPC 567 International Workshop on Earthquake Archaeology and Palaeoseismology, Vol. 2. Field Training Course Notebook, 7–13 September, Baelo Claudia, Cádiz, SpainGoogle Scholar
  18. Glade T, Crozier MJ (2005) The nature of landslide hazard impact. In: Glade T, Anderson M, Crozier M (eds) Landslide hazard and risk. Wiley, Chichester, pp 43–74CrossRefGoogle Scholar
  19. Griffiths DH, Barker RD (1993) Two-dimensional resistivity imaging and modelling in areas of complex geology. J Appl Geophys 29:211–226CrossRefGoogle Scholar
  20. Guerrero J, Gutiérrez F, García-Ruiz JM, Galve JP, Lucha P, Carbonel D, Bonachea J (2012) Landslide map of the upper Gallego Valley (central Spanish Pyrenees). J Maps 8:484–491CrossRefGoogle Scholar
  21. Gutiérrez F, Acosta E, Rios S, Guerrero J, Lucha P (2005) Geomorphology and geochronology of sackung features (uphill-facing scarps) in the Central Spanish Pyrenees. Geomorphology 69:298–314CrossRefGoogle Scholar
  22. Gutiérrez F, Ortuño M, Lucha P, Guerrero J, Acosta E, Coratza P, Piacentini D, Soldati M (2008) Late Quaternary episodic displacement on a sackung scarp in the central Spanish Pyrenees. Secondary paleoseismic evidence? Geodin Acta 21:187–202CrossRefGoogle Scholar
  23. Gutiérrez F, Lucha P, Galve JP (2010) Reconstructing the geochronological evolution of large landslides by means of the trenching technique in the Yesa Reservoir (Spanish Pyrenees). Geomorphology 124:124–136CrossRefGoogle Scholar
  24. Gutiérrez F, Linares R, Roqué C, Zarroca R, Rosell J, Carbonel D, Galve JP (2012a) Investigating gravitational grabens related to lateral spreading and evaporite dissolution subsidence by means of detailed mapping, trenching, and electrical resistivity tomography (Spanish Pyrenees). Lithosphere. doi: 10.1130/L202.1 Google Scholar
  25. Gutiérrez F, Valero-Garcés B, Desir G, González-Sampériz P, Gutiérrez M, Linares R, Zarroca M, Moreno A, Guerrero J, Roqué C, Arnold LJ, Demuro M (2012b) Late Holocene evolution of playa-lakes in the Central Ebro Depression based on geophysical surveys and morpho-stratigraphic analysis of lacustrine terraces. Geomorphology. doi: 10.1016/j.geomorph.2012.02.013 Google Scholar
  26. Hack R (2000) Geophysics for slope stability. Surv Geophys 21:423–448CrossRefGoogle Scholar
  27. Hecht S (2003) Investigation of the shallow subsurface with seismic refraction methods—application potentials and limitations with examples from various field studies. Z Geomorphol N F Suppl 132:19–36Google Scholar
  28. Hoffmann T, Schrott L (2003) Determining sediment thickness of talus slopes and valley fill deposits using seismic refraction—a comparison of 2D interpretation tools. Z Geomorphol N F Suppl 132:71–87Google Scholar
  29. Jomard H, Lebourg T, Tric E (2007) Identification of the gravitational boundary in weathered gneiss by geophysical survey: La Clapière landslide (France). J Appl Geophys 62:47–57CrossRefGoogle Scholar
  30. Jomard H, Lebourg T, Guglielmi Y, Tric E (2010) Electrical imaging of sliding geometry and fluids associated with a deep seated landslide (La Clapière, France). Earth Surf Proc Land 35:588–599Google Scholar
  31. Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bull Soc Géol Fr 178:101–112CrossRefGoogle Scholar
  32. Jongmans D, Hemroulle P, Demanet D, Renardy F, Vanbrabant Y (2000) Application of 2D electrical and seismic tomography techniques for investigating landslides. European J Env Eng Geophys 5:75–89Google Scholar
  33. Keefer DK (1984) Landslides caudes by earthquakes. Geol Soc Am Bull 95:406–421CrossRefGoogle Scholar
  34. Le Roux O, Jongmans D, Kasperski J, Schwartz S, Potherat P, Lebrouc V, Lagabrielle R, Meric O (2011) Deep geophysical investigation of the large Séchilienne landslide (Western Alps, France) and calibration with geological data. Eng Geol 120:18–31CrossRefGoogle Scholar
  35. Linares R (1995) La Geología Ambiental de la depresión de Tremp-Isona (Pallars Jussà). Publicaciones de la Universitat Autònoma de Barcelona, Bellaterra: 235 pp. 11 mapsGoogle Scholar
  36. Linares R, Lomoschitz A, Pallí L, Roqué C, Brusi D, Quintana A (2001) Reconocimiento geofísico del deslizamiento de Rosiana (depresión de Tirajana, Gran Canaria). Scientia Gerundensis 25:35–50Google Scholar
  37. Linares R, Menció A, Rivas G, Casadellà L, Rodríguez A (2008) Caracterització hidrogeològia de la massa d’aigua 43. Agència Catalana de l’Aigua. Barcelona. Unpublished reportGoogle Scholar
  38. Linares R, Roqué C, Copons R (2010a) Mapa geoantròpic num. 290-2-1 (Isona). Mapa Geològic de Catalunya E. 1:25.000. I.G.C, Barcelona.
  39. Linares R, Rosell J, Roqué C, Gutiérrez F (2010b) Origin and evolution of tufa mounds related to artesian karstic springs in Isona area (Pyrenees, NE Spain). Geodin Acta 23:129–150CrossRefGoogle Scholar
  40. Linares R, Roqué C, Copons R (2011) Mapa geoantròpic num. 290-1-2 (Llimiana). Mapa Geològic de Catalunya E. 1:25.000. I.G.C, Barcelona.
  41. Loke MH (2011) Electrical imaging surveys for environmental and engineering studies—a practical guide to 2D and 3D surveys, Penang, Malaysia.
  42. Loke MH, Barker RD (1996) Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophys Prospect 44:131–152CrossRefGoogle Scholar
  43. Loke MH, Acworth I, Dahlin T (2003) A comparison of smooth and blocky inversion methods in 2D electrical imaging surveys. Explor Geophys 34:182–187CrossRefGoogle Scholar
  44. McCalpin JP (2009) Field techniques in paleoseismology–terrestrial environments. In: McCalpin JP (ed) Paleoseismology. Academic Press, San Diego, pp 29–118CrossRefGoogle Scholar
  45. Meric O, Garambois S, Jongmans D, Wathelet M, Chatelain JL, Vengeon JM (2005) Application of geophysical methods for the investigation of the large gravitational mass movement of Séchilienne, France. Can Geotech J 42:1105–1115CrossRefGoogle Scholar
  46. Michetti AM, Esposito E, Guerrieri L, Porfido S, Serva L, Tatevossian R, Vittori E, Audemard F, Azuma T, Clague J, Comerci V, Gurpinar A, Mc Calpin J, Mohammadioun B, Mörner NA, Ota Y, Roghozin E (2007) Intensity Scale ESI 2007. In: Guerrieri L. & Vittori E. (Eds): Mem Descr Carta Geol d’Italia vol. 74, Servizio Geologico d’Italia–Dipartimento Difesa del Suolo, APAT, RomeGoogle Scholar
  47. Muñoz JA (1988) Estructura de las unidades surpirenaicas en la transversal del corte ECORS, in Field Gide Reunión Extraordinaria ECORSPIRINEOS: Baussens- Balaguer, Spain, Sociedad Geológica de España and Société Géologique de FranceGoogle Scholar
  48. Nicolas M, Santoire JP, Delpech PY (1990) Intraplate seismicity: new seismotectonic data in Western Europe. Tectonophysics 179:7–53CrossRefGoogle Scholar
  49. Olivera C, Redondo E, Lambert J, Riera-Melis A, Roca A (2006) Els terratrèmols dels segles XIV i XV a Catalunya. Ed Institut Cartogràfic de Catalunya, 407 ppGoogle Scholar
  50. Palmer D (1980) The generalized reciprocal method of seismic refraction interpretation. Society of Exploration Geophysicists, Tulsa, p 112CrossRefGoogle Scholar
  51. Palmer D (1981) An introduction to the generalized reciprocal method of seismic refraction interpretation. Geophysics 46:1508–1518CrossRefGoogle Scholar
  52. Palmer AN (2009) Cave geology. Cave Books, Dayton, p 454Google Scholar
  53. Pánek T, Margielewski W, Tábořík P, Urban J, Hradecký J, Szura C (2010) Gravitationally-induced caves and other discontinuities detected by 2D electrical resistivity tomography: case studies from the Polish Flysch Carpathians. Geomorphology 123:165–180CrossRefGoogle Scholar
  54. Pascual JM (1992) Hidrogeología básica de las Sierras Marginales Prepirenaicas de la província de Lleida. V Simposio Hidrogeología, AlicanteGoogle Scholar
  55. Pazdirek, O. and Blaha, V, 1996. Examples of resistivity imaging using ME-100 resistivity field acquisition system. EAGE 58th Conference and Technical Exhibition Extended Abstracts, AmsterdamGoogle Scholar
  56. Pi E, Suala E, Samsó JM, Escuer J, Casanovas J (2004) Mapa Geològic de Catalunya 1:25.000. Figuerola de Meià (65–25). Institut Cartogràfic de Catalunya, BarcelonaGoogle Scholar
  57. Pinyol NM, Alonso EE (2010) Fast planar slides. A closed form thermo-hydromechanical solution. Int J Numer Anal Methods Geomech 34:27–52Google Scholar
  58. Porfido S, Esposito E, Vittori E, Tranfaglia G, Michetti AM, Blumetti M, Ferreli L, Guerrieri L, Serva L (2002) Areal distribution of ground effects induced by strong earthquakes in the southern Apennines (Italy). Surv Geophys 23:529–562CrossRefGoogle Scholar
  59. Reimer PJ, Baillie MGL, Bard E, Bayliss A, Beck JW, Bertrand C, Blackwell PG, Buck CE, Burr G, Cutler KB, Damon PE, Edwards RL, Fairbanks RG, Friedrich M, Guilderson TP, Hughen KA, Kromer B, McCormac FG, Manning S, Bronk Ramsey C, Reimer RW, Remmele S, Southon JR, Stuiver M, Talamo S, Taylor FW, van der Plicht J, Weyhenmeyer CE (2009) IntCal09 and Marine09 radiocarbon age calibration curves, 0–50,000 years cal BP. Radiocarbon 51:1111–1150Google Scholar
  60. Rodríguez CE, Bommer JJ, Chandler RJ (1999) Earthquake-induced landslides: 1980–1997. Soil Dyn Earthq Eng 18:325–346CrossRefGoogle Scholar
  61. Rodríguez-Pascua MA, Pérez-López R, Giner-Robles JL, Silva PG, Garduño-Monroy VH, Reicherter K (2011) A comprehensive classification of Earthquake Archaeological Effects (EAE) in archaeoseismology: application to ancient remains of Roman and Mesoamerican cultures. Quatern Int 242:20–30Google Scholar
  62. Roqué C, Zarroca M, Linares R (2012) Subsurface initiation of tafoni in granite terrains—geophysical evidence from Ne Spain: geomorphological implications. Geomorphology. doi: 10.1016/j.geomorph.2012.06.015 Google Scholar
  63. Roqué C, Linares R, Zarroca M, Rosell J, Pellicer XM, Gutiérrez F (2013) Chronology and paleoenvironmental interpretation of talus flatiron sequences in a sub-humid mountainous area: Tremp Depression, Spanish Pyrenees. Earth Surf Proc Land. doi: 10.1002/esp.3391 Google Scholar
  64. Rosell J, Linares R (2001) Grandes deslizamientos en el frente de la lámina cabalgante del Montsec (Sierra del Montsec, Prepirineo Central). Revista de la Sociedad Geológica de España 14:255–268Google Scholar
  65. Rosell J, Linares R, Fité F, Roqué C, Llompart C, Losantos M (2010) Montclús: Misteriós naixement i desaparició d’un poble. El llengutage de les pedres, n 1. Ed. Institut Geològic de Catalunya, Barcelona, p 95Google Scholar
  66. Roure F, Choukroune P, Berastegui X, Munoz JA, Villien A, Matheron P, Bareyt M, Seguret M, Camara P, Deramond J (1989) Ecors deep seismic data and balanced cross sections: geometric constraints on the evolution of the Pyrenees. Tectonics 8:41–50CrossRefGoogle Scholar
  67. Silva PG, Borja F, Zazo C, Goy JL, Bardají T, De Luque L, Lario L, Dabrio CJ (2005) Archaeoseismic record at the ancient Roman City of Baelo Claudia (Cádiz, south Spain). Tectonophysics 408:129–146CrossRefGoogle Scholar
  68. Susagna T, Roca A, Goula X, Batlló J (1994) Analysis of macroseismic and instrumental data for the study of the 19 November 1923 earthquake in the Aran Valley (Central Pyrenees). Nat Hazards 10:7–17CrossRefGoogle Scholar
  69. Suski B, Brocard G, Authemayou C, Muralles BC, Teyssier C, Holliger K (2010) Localization and characterization of an active fault in an urbanized area in central Guatemala by means of geoelectrical imaging. Tectonophysics 480:88–98CrossRefGoogle Scholar
  70. Van Overmeeren RA, Ritsema IL (1988) Continouos vertical electrical sounding. First Break 6:313–324Google Scholar
  71. Vilaplana JM (Ed) (2008) RISKCAT: Els riscos naturals a Catalunya. Consell Assessor per al Desenvolupament Sostenible, Generalitat de Catalunya. 35pp and CDGoogle Scholar
  72. Zarroca M (2012) Application of 2D Electrical Resistivity Imaging (ERI) to geomorphological research in complex groundwater flow patterns. Universidad Autónoma de Barcelona, unpublished PhD ThesisGoogle Scholar
  73. Zarroca M, Linares R, Bach J, Roqué C, Moreno V, Font L, Baixeras C (2012) Integrated geophysics and soil gas profiles as a tool to characterize active faults: the Amer fault example (Pyrenees, NE Spain). Environ Earth Sci 67:889–910CrossRefGoogle Scholar
  74. Zurita J (1978) Anales de la Corona de Aragón, ed. A. Canellas, vol. 4, ZaragozaGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. Zarroca
    • 1
  • R. Linares
    • 1
  • C. Roqué
    • 2
  • J. Rosell
    • 3
  • F. Gutiérrez
    • 4
  1. 1.Departamento de GeologíaUniversidad Autónoma de BarcelonaBarcelonaSpain
  2. 2.Àrea de Geodinàmica Externa i GeomorfologiaUniversitat de GironaGironaSpain
  3. 3.LleidaSpain
  4. 4.Departamento de Ciencias de la TierraUniversidad de ZaragozaZaragozaSpain

Personalised recommendations