, Volume 11, Issue 5, pp 859–875 | Cite as

Integration of a limit-equilibrium model into a landslide early warning system

  • Benni Thiebes
  • Rainer Bell
  • Thomas Glade
  • Stefan Jäger
  • Julia Mayer
  • Malcolm Anderson
  • Liz Holcombe
Original Paper


Landslides are a significant hazard in many parts of the world and exhibit a high, and often underestimated, damage potential. Deploying landslide early warning systems is one risk management strategy that, amongst others, can be used to protect local communities. In geotechnical applications, slope stability models play an important role in predicting slope behaviour as a result of external influences; however, they are only rarely incorporated into landslide early warning systems. In this study, the physically based slope stability model CHASM (Combined Hydrology and Stability Model) was initially applied to a reactivated landslide in the Swabian Alb to assess stability conditions and was subsequently integrated into a prototype of a semi-automated landslide early warning system. The results of the CHASM application demonstrate that for several potential shear surfaces the Factor of Safety is relatively low, and subsequent rainfall events could cause instability. To integrate and automate CHASM within an early warning system, international geospatial standards were employed to ensure the interoperability of system components and the transferability of the implemented system as a whole. The CHASM algorithm is automatically run as a web processing service, utilising fixed, predetermined input data, and variable input data including hydrological monitoring data and quantitative rainfall forecasts. Once pre-defined modelling or monitoring thresholds are exceeded, a web notification service distributes SMS and email messages to relevant experts, who then determine whether to issue an early warning to local and regional stakeholders, as well as providing appropriate action advice. This study successfully demonstrated the potential of this new approach to landslide early warning. To move from demonstration to active issuance of early warnings demands the future acquisition of high-quality data on mechanical properties and distributed pore water pressure regimes.


Landslide Early warning system CHASM (Combined Hydrology and Stability Model) Physically based Modelling Web processing service Web notification service Swabian Alb 



We would like to thank the German Ministry of Education and Research for funding the ILEWS project (No. 03G0653A– 03G0653F). We are grateful to LUBW, LGRB and DWD for providing essential data and thank the administration of Lichtenstein-Unterhausen for their cooperation. Additional support was granted by the 51st Chinese PostDoc Science Foundation (No.2012M511298). We also like to thank two anonymous reviewers for their helpful comments.


  1. Anderson M, Holcombe L, Flory R, Renaud J-P (2008) Implementing low-cost landslide risk reduction: a pilot study in unplanned housing areas of the Caribbean. Nat Hazard 47:297–315. doi: 10.1007/s11069-008-9220-z CrossRefGoogle Scholar
  2. Anderson MG, Lloyd DM, Park A, Hartshorne J, Othman A (1996) Establishing new design dynamic modelling criteria for tropical cut slopes. In: Senneset K (ed) Landslides, 7th International Symposium on Landslides. Balkema, Rotterdam, pp 1067–1072Google Scholar
  3. Anderson MG, Richards K (1987) Modelling slope stability: the complementary nature of geotechnical and geomorphological approaches. In: Anderson MG (ed) Slope stability: geotechnical engineering and geomorphology. Wiley, New York, pp. 1–9Google Scholar
  4. Anderson SA, Thallapally LK (1996) Hydrologic response of a steep tropical slope to heavy rainfall. In: Senneset K (ed) Landslides, 7th International Symposium on Landslides. Balkema, Rotterdam, pp 1489–1495Google Scholar
  5. Aslan AM, Burghaus S, Li L, Schauerte W, Kuhlmann H (2010) Bewegungen an der Oberfläche. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 74–84Google Scholar
  6. Badoux A, Graf C, Rhyner J, Kuntner R, McArdell BW (2009) A debris-flow alarm system for the Alpine Illgraben catchment: design and performance. Nat Hazard 49:517–539. doi: 10.1007/s11069-008-9303-x CrossRefGoogle Scholar
  7. Barla G, Amici R, Vai L, Vanni A (2004) Investigation, monitoring and modelling of a landslide in porphyry in a public safety perspective. In: Lacerda W, Ehrlich M, Fontoura SAB, Sayao AS (eds) Landslides: evaluation and stabilization, 9th International Symposium on Landslides. Balkema, Leiden, pp 623–628Google Scholar
  8. Bartels H, Dietzer B, Malitz G, Albrecht FM, Guttenberg J (2005) KOSTRA-DWD-2000. Starkniederschlagshöhen für Deutschland (1951–2000). Fortschreibungsbericht. Deutscher Wetterdienst (DWD), Abteilung Hydrometeorologie, Offenbach, GermanyGoogle Scholar
  9. Bear J (1972) Dynamics of fluids in porous media. Dover, New YorkGoogle Scholar
  10. Bell R (2007) Lokale und regionale Gefahren- und Risikoanalyse gravitativer Massenbewegungen an der Schwäbischen Alb. Dissertation. University of Bonn, GermanyGoogle Scholar
  11. Bell R, Kruse J-E, Garcia A, Glade T, Hördt A (2006) Subsurface investigations of landslides using geophysical methods—geoelectrical applications in the Swabian Alb (Germany). Geographica Helvetica 201–208.Google Scholar
  12. Bell R, Mayer J, Pohl J, Greiving S, Glade T (2010a) Integrative Frühwarnsysteme für Gravitative Massenbewegungen (ILEWS)—Monitoring, Modellierung, Implementierung. Klartext, EssenGoogle Scholar
  13. Bell R, Wiebe H, Krummel H (2010b) Vorerkundung. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 62–69Google Scholar
  14. Beven KJ (1985) Distributed models. In: Anderson MG, Burt TB (eds) Hydrological forecasting. Wiley, New York, pp 405–435Google Scholar
  15. Bibus E (1986) Die Rutschung am Hirschkopf bei Mössingen (Schwäbische Alb). Geowissenschaftliche Rahmenbedingungen—Geoökologische Folgen Geoökodynamik 333–360Google Scholar
  16. Bibus E (1999) Vorzeitige, rezente und potentielle Massenbewegungen in SW-Deutschland—Synthese des Tübinger Beitrags zum MABIS-Projekt. In: Bibus E, Terhorst B (eds) Angewandte Studien zu Massenbewegungen. pp 1–57Google Scholar
  17. Bishop AW (1955) The use of the slip circle in the stability analysis of slopes. Geotechnique 5:7–17CrossRefGoogle Scholar
  18. Bleich KE (1960) Das Alter des Albtraufs. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg 115:39–92Google Scholar
  19. Blikra LH (2008) The Aknes rockslide; monitoring, threshold values and early-warning. Landslides and engineered slopes. From the past to the future. Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, pp. 1089–1094Google Scholar
  20. Camek T, Becker R, Öhl S (2010) Bodenfeuchte (TDR, Tensiometer). In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 92–100Google Scholar
  21. Cannata M, Luan TX, Molinari ME, Long NH (2010) WPS application for shallow landslide hazard assessment. GeoInformatics for Spatial-Infrastructure Development in Earth and Allied Sciences (GIS-IDEAS) 2010Google Scholar
  22. Capparelli G, Tiranti D (2010) Application of the MoniFLaIR early warning system for rainfall-induced landslides in Piedmont region (Italy). Landslides 4:401–410CrossRefGoogle Scholar
  23. Chung C (2008) Predicting landslides for risk analysis—spatial models tested by a cross-validation technique. Geomorphology 94:438–452. doi: 10.1016/j.geomorph.2006.12.036 CrossRefGoogle Scholar
  24. Clark AR, Moore R, Palmer JS (1996) Slope monitoring and early warning systems: application to coastal landslide on the south and east coast of England, UK. In: Senneset K (ed) Landslides, 7th International Symposium on Landslides. Balkema, Rotterdam, pp 1531–1538Google Scholar
  25. Collison AJC, Anderson MG (1996) Using a combined slope hydrology/stability model to identify suitable conditions for landslide prevention by vegetation in the humid tropics. Earth Surf Process Landforms 21:737–747CrossRefGoogle Scholar
  26. Consortium for Small Scale Modeling (2007) Operations at DWD—COSMO-DE. Accessed 24 Jan 2011
  27. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (special report), Transportation and Research Board Special Report 247. National Research Council, Washington D.C., pp 36–75Google Scholar
  28. Deutscher Wetterdienst (2010b) COSMO. Accessed 24 Jan 2011
  29. Deutscher Wetterdienst (2010a) Wettervorhersagemodelle. Accessed 24 Jan 2011
  30. Dikau R, Brunsden D, Schrott L, Ibsen ML (eds) (1996) Landslide recognition: identification, movement and causes: identification, movement and causes. Wiley, ChichesterGoogle Scholar
  31. Dikau R, Weichselgartner J (2005) Der unruhige Planet. Der Mensch und die Naturgewalten. Primus, DarmstadtGoogle Scholar
  32. Ferentinou MD, Sakellariou M, Matziaris V, Charalambous S (2006) An introduced methodology for estimating landslide hazard for seismic and rainfall induced landslides in a geographical information system environment. In: Nadim F, Pöttler R, Einstein H, Klapperich H, Kramer S (eds) Geohazards. Lillehammer, Norway, pp 1–8Google Scholar
  33. Forchheimer P (1930) Hydraulik. Teubner, LeipzigGoogle Scholar
  34. Froese CR, Murray C, Cavers DS, Anderson WS, Bidwell AK, Read RS, Cruden DM, Langenberg W (2005) Development and implementation of a warning system for the South Peak of Turtle Mountain. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) International Conference on Landslide Risk Management. Taylor & Francis, Vancouver, pp 705–712Google Scholar
  35. Fundinger A (1985) Ingenieurgeologische Untersuchung und geologische Kartierung (Dogger/Malm) der näheren Umgebung der Rutschungen am Hirschkopf bei Mössingen und am Irrenberg bei Thanheim (Baden-Würrtemberg). Geowissenschaftliche Fakultät, University Tübingen, TübingenGoogle Scholar
  36. Goetz JN, Guthrie RH, Brenning A (2011) Integrating physical and empirical landslide susceptibility models using generalized additive models. Geomorphology 129(3–4):376–386Google Scholar
  37. Greiving S (2010) Risikomanagement. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp. 203–230Google Scholar
  38. Guzzetti F, Reichenbach P, Cardinali M, Galli M, Ardizzone F (2005) Probabilistic landslide hazard assessment at the basin scale. Geomorphology 72:272–299. doi:  10.1016/j.geomorph.2005.06.002 Google Scholar
  39. Ho KKS, Lau JWC (2010) Learning from slope failures to enhance landslide risk management. Q J Eng Geol Hydrogeol 43:33–68CrossRefGoogle Scholar
  40. Iovine GGR, Lollino P, Gariano SL, Terranova OG (2010) Coupling limit equilibrium analyses and real-time monitoring to refine a landslide surveillance system in Calabria (southern Italy). Nat Hazards Earth Syst Sci 10:2341–2354. doi: 10.5194/nhess-10-2341-2010 CrossRefGoogle Scholar
  41. Jäger S, Paulsen H, Mayer C, Huber B, Dietz R, Greve K, Camek T (2010) Informationstechnik in der Frühwarnmodellierung. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 155–179Google Scholar
  42. Jäger S, Thiebes B, Bell R, Glade T (2012) Applying geospatial web standards for real-time on-line slope stability modeling as a basis for a landslide early warning system. Proceedings of the 11th International & 2nd North American Symposium on LandslidesGoogle Scholar
  43. Janbu N (1996) Slope stability evaluations in engineering practice. In: Senneset K (ed) Landslides, 7th International Symposium on Landslides. Balkema, Rotterdam, pp 17–34Google Scholar
  44. Janbu N (1954) Application of composite slip surface for stability analysis. Proceedings of the European Conference on the Stability of Earth Slopes. pp 43–49Google Scholar
  45. Kallinich J (1999) Verbreitung, Alter und Ursachen von Massenverlagerungen an der Schwäbischen Alb auf der Grundlage von geomorphologischen Kartierungen. In: Bibus E, Terhorst B (eds) Angewandte Studien zu Massenbewegungen. pp 59–82Google Scholar
  46. Konikow LF, Bredehoft JD (1992) Groundwater models cannot be validated. Adv Water Resour 15:75–83CrossRefGoogle Scholar
  47. Krauter E (1992) Hangrutschungen – Ein Umweltproblem. Conference paper @ Ingenieurvermessung 1992. XI. Internationaler Kurs Für Ingenieurvermessung. Zürich, Switzerland. Eidgenössische Technische Hochschule (ETH) Zürich:1–12.Google Scholar
  48. Krauter E, Lauterbach M, Feuerbach J (2007) Hangdeformationen–Beobachtungsmethoden und Risikoanalyse. Geo-international & Forschungsstelle Rutschungen 1–6.Google Scholar
  49. Kreja R, Terhorst B (2005) GIS-gestützte Ermittlung rutschungsgefährdeter Gebiete am Schönberger Kapf bei Öschingen (Schwäbische Alb). Die Erde 136:395–412Google Scholar
  50. Kruse JE (2006) Untergrunderkundung und Monitoring von gravitativen Massenbewegungen mit Gleichstromgeoelektrik und Radiomagnetotellurik. Unpublished master thesis. University of Bonn, GermanyGoogle Scholar
  51. Lateh H, Anderson MG, Ahmad F (2008) CHASM—the model to predict stability of gully walls along the east–west highway in Malaysia: a case study. Proceedings of the First World Landslide Forum. ISDR, Tokyo, Japan, pp. 340–343Google Scholar
  52. Lauterbach M, Krauter E, Feuerbach J (2002) Satellitengestütztes Monitoring einer Großrutschung im Bereich eines Autobahndammes bei Landstuhl/Pfalz. Geotechnik 25:97–100Google Scholar
  53. Leser H (1982) Erläuterungen zur Geomorphologischen Karte 1:25,000 der Bundesrepublik Deutschland. GMK 25 Blatt 9 7520 Mössingen Geomorphologische Detailkartierung in der Bundesrepublik Deutschland. Geo Center, Stuttgart, GermanyGoogle Scholar
  54. Macfarlane DF, Sylvester PK, Benck JM, Whiford ND (1996) Monitoring strategy and performance of instrumentation in the clyde power project landslide, New Zealand. In: Senneset K (ed) Landslides (Glissements de Terrain): Proceedings of the 7th International Symposium, Trondheim, Norway, 17–21 June 1996. Taylor & Francis, London, pp. 1557–1564Google Scholar
  55. Malitz G (2005) KOSTRA-DWD-2000. Starkniederschlagshöhen für Deutschland (1951–2000). Grundlagenbericht. Deutscher Wetterdienst (DWD), Hydrometeorologie, Offenbach, GermanyGoogle Scholar
  56. Matziaris VG, Ferentinou M, Sakellariou MG (2005) Slope stability in unsaturated soils under static and rainfall conditions. Ovidius Univ Ann Ser Civ Eng 1:103–110Google Scholar
  57. Mayer J, Pohl W (2010) Risikokommunikation. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 180–202Google Scholar
  58. Meyenfeld H (2009) Modellierungen seismisch ausgelöster gravitativer Massenbewegungen für die Schwäbische Alb und den Raum Bonn und Erstellen von Gefahrenhinweiskarten. Dissertation. University of Bonn, GermanyGoogle Scholar
  59. Millington RJ, Quirk JP (1959) Permeability of porous media. Nature 183:387–388CrossRefGoogle Scholar
  60. Muir-Wood D (2004) Geotechnical modelling. Taylor and Francis, LondonCrossRefGoogle Scholar
  61. Muir-Wood D, Mackenzie NL, Chan AHC (1993) Selection of parameters for numerical predictions. In: Predictive soil mechanics. Proceedings of the Wroth Memorial symposium, St Catherine’s College, Oxford. Thomas Telford, pp. 496-512Google Scholar
  62. Neuhäuser B, Terhorst B (2007) Landslide susceptibility assessment using “weights-of-evidence” applied to a study area at the Jurassic escarpment (SW-Germany). Geomorphology 86:12–24Google Scholar
  63. Ohmert W, Von Koenigswald W, Münzing K, Villinger E (1988) Geologische Karte 1:25.000 von Baden Württemberg. Erläterungen zu Blatt 7521 ReutlingenGoogle Scholar
  64. Palm H, Staab S, Schmitz R (2003) Verkehrsicherheiten an klassifizierten Straßen im Hinblick auf Steinschlag- und Felssturzgefahr. Rutschungen in Rheinland-Pfalz. Erkennen, Erkunden und Sanieren. Felssicherung und Sanierung von Stützmauern. Mainz, Germany, pp. 16–22Google Scholar
  65. Papathoma-Köhle M, Neuhäuser B, Ratzinger K, Wenzel H, Dominey-Howes D (2007) Elements at risk as a framework for assessing the vulnerability of communities to landslides. Nat Hazards Earth Syst Sci 7:765–779CrossRefGoogle Scholar
  66. Richards LA (1931) Capillary conduction of liquids through porous mediums. Physics 1:318–333CrossRefGoogle Scholar
  67. Rossi M, Guzzetti F, Reichenbach P, Mondini AC, Peruccacci S (2010) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114:129–142CrossRefGoogle Scholar
  68. Ruch C (2009) Georisiken. Aktive Massenbewegungen am Albtrauf. LGRB-Nachrichten 8:1–2Google Scholar
  69. Sakellariou M, Ferentinou M, Charalambous S (2006) An integrated tool for seismic induced landslide hazards mapping. In: Agioutantis Z, Komnitsas K (eds) First European Conference on Earthquake Engineering and Seismology. Geneva, Switzerland, pp. 1365–1375Google Scholar
  70. Sass O, Bell R, Glade T (2008) Comparison of GPR, 2D-resistivity and traditional techniques for the subsurface exploration of the Öschingen landslide, Swabian Alb (Germany). Geomorphology 93:89–103CrossRefGoogle Scholar
  71. Saxton KE, Rawls WJ (2006) Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Sci Soc Am J 5:1569–1578CrossRefGoogle Scholar
  72. Saxton KE, Willey MP (2006) The SPAW model for agricultural field and pond hydrologic simulation. In: Singh VP, Frevert D (eds) Mathematical modeling of watershed hydrology. CRC, Boca Raton, pp. 401–435Google Scholar
  73. Schädel K, Stober I (1988) Rezente Großrutschungen an der Schwäbischen Alb. Jahreshefte des Geologischen Landesamtes Baden-Württemberg 431–439Google Scholar
  74. Schut P (2007) OpenGIS Web Processing Service: OGC 05-007r7: Version 1.0. 0. Open Geospatial Consortium Inc.Google Scholar
  75. Simonis I, Echterhoff J (2006) Draft OpenGIS® Web Notification Service Implementation Specification.Google Scholar
  76. Sirangelo B, Braca G (2004) Identification of hazard conditions for mudflow occurrence by hydrological model: application of FLaIR model to Sarno warning system. Eng Geol 73:267–276CrossRefGoogle Scholar
  77. Stähli M, Bartelt P (2007) Von der Auslösung zur Massenbewegung. In: Hegg C, Rhyner J (eds) Warnung bei aussergewöhnlichen Naturereignissen. pp 33–38Google Scholar
  78. Sung CT, Iba J (2010) Accuracy of the Saxton–Rawls method for estimating the soil water characteristics for mineral soils of Malaysia. Pertanika J Trop Agric Sci 33:297–302Google Scholar
  79. Terhorst B (1997) Formenschatz, Alter und Ursachenkomplexe von Massenverlagerungen an der schwäbischen Juraschichtstufe unter besonderer Berücksichtigung von. Boden- und Deckschichtenentwicklung, TübingenGoogle Scholar
  80. Terhorst B, Kreja R (2009) Slope stability modelling with SINMAP in a settlement area of the Swabian Alb. Landslides 6:309–319. doi: 10.1007/s10346-009-0167-2 CrossRefGoogle Scholar
  81. Thiebes B (2011) Landslide analysis and early warning—local and regional case study in the Swabian Alb, Germany. Dissertation. University of Vienna, AustriaGoogle Scholar
  82. Thiebes B (2012) Landslide analysis and early warning systems: local and regional case study in the Swabian Alb. Springer, BerlinCrossRefGoogle Scholar
  83. Turner AK (1996) Socioeconomic significance of landslides. In: Turner AK, Schuster RL (eds) Landslides: investigation and mitigation (special report). Transportation Research Board, pp. 12–35Google Scholar
  84. UMS (2007) Bedienungsanleitung T8 Langzeitmonitoring-Tensiometer. UMS, MünchenGoogle Scholar
  85. Wiebe H, Krummel H (2010) Bodenfeuchte (Geoelektrik). In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 100–116Google Scholar
  86. Wiebe H, Krummel H, Camek T, Thiebes B (2010) Kombinierte Auswertung der Bodenfeuchte. In: Bell R, Mayer J, Pohl J, Greiving S, Glade T (eds) Integrative Frühwarnsysteme für gravitative Massenbewegungen (ILEWS) Monitoring, Modellierung, Implementierung. Klartext, Essen, pp 116–129Google Scholar
  87. Wilkinson PL, Anderson MG, Lloyd DM (2002a) An integrated hydrological model for rain-induced landslide prediction. Earth Surf Process Landforms 27:1285–1297. doi: 10.1002/esp.409 CrossRefGoogle Scholar
  88. Wilkinson PL, Anderson MG, Lloyd DM, Renaud JP (2002b) Landslide hazard and bioengineering: towards providing improved decision support through integrated numerical model development. Environ Model Softw 17:333–344CrossRefGoogle Scholar
  89. Wilkinson PL, Brooks SM, Anderson MG (2000) Design and application of an automated non-circular slip surface search within a combined hydrology and stability model (CHASM). Hydrol Processes 14:2003–2017CrossRefGoogle Scholar
  90. Willenberg H, Spillmann T, Eberhardt E, Evans KF, Loew H, Maurer H (2002) Multidisciplinary monitoring of progressive failure process in brittle rock slopes—concepts and system design. In: Jan Rybář J, Stemberk J, Wagner P (eds) Landslides: proceeding of the First European Conference on Landslides. Balkema, Prague, pp 477–483Google Scholar
  91. Yin Y (2009) Landslide mitigation strategy and implementation in China. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 482–484Google Scholar
  92. Yin Y, Wang H, Gao Y, Li X (2010) Real-time monitoring and early warning of landslides at relocated Wushan Town, the Three Gorges Reservoir, China. Landslides 7:339–349. doi: 10.1007/s10346-010-0220-1 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Benni Thiebes
    • 1
  • Rainer Bell
    • 2
  • Thomas Glade
    • 2
  • Stefan Jäger
    • 3
  • Julia Mayer
    • 4
  • Malcolm Anderson
    • 5
  • Liz Holcombe
    • 5
  1. 1.School of Geography ScienceNanjing Normal UniversityNanjingPeople’s Republic of China
  2. 2.Department of Geography and Regional ResearchUniversity of ViennaViennaAustria
  3. 3.Geomer GmbHHeidelbergGermany
  4. 4.Department of GeographyUniversity of BonnBonnGermany
  5. 5.Department of Civil EngineeringUniversity of BristolBristolUK

Personalised recommendations