Advertisement

Landslides

, Volume 11, Issue 2, pp 225–246 | Cite as

DInSAR analysis of ALOS PALSAR images for the assessment of very slow landslides: the Tena Valley case study

  • Juan Carlos García-Davalillo
  • Gerardo Herrera
  • Davide Notti
  • Tazio Strozzi
  • Inmaculada Álvarez-Fernández
Original Paper

Abstract

In this work we analyse the performance of advanced land observing satellite (ALOS) phased array type L-band syntetic aperture radar (PALSAR) images for mapping and monitoring of very slow landslides using conventional differential interferometry in the Tena Valley (Central Pyrenees, Spain). These results are compared with those retrieved in previous works where multi-band advanced differential interferometric synthetic aperture radar (DInSAR) analysis was performed for the same area using PSI techniques. The study area is largely underlain by slates (ca. 80 %) where large deep-seated very slow earth flows are dominant. The results reveal that DInSAR analysis is able to measure displacements of landslides with a greater spatial coverage than PSI analysis, but for a lower amount of them (nine against 51). Overall, the combination of the DInSAR and multi-band PSI analysis permitted to map and monitor 68 % of the landslides in Tena Valley. From this amount, 63 landslides are considered as active. The main advantage of DInSAR with respect to PSI analysis is the capability to detect faster movements (up to 145 cm year−1) derived from the 46 days interferograms. That is the case of Sextas and La Selva landslides where an acceleration of the moving mass was measured after intense rainfall periods producing major damages to linear infrastructures. The combination of measured displacement from ALOS interferograms, with the observed damages on the A-136 road, was useful to assess the potential damage that could cause these slow movements. In general, it is demonstrated that even though PSI analysis provides a better performance in terms of landslide mapping, L-band DInSAR analysis provides an added value for landslide hazard assessment through radar remote sensing. For this reason it is necessary to encourage the launch of new satellite missions similar to ALOS PALSAR that could operate with shorter revisiting time periods.

Keywords

Mapping Monitoring SAR interferometry L-band Landslides Tena valley 

Notes

Acknowledgements

ALOS PALSAR data courtesy AOALO-3550, C JAXA. The DEM has been provided by the cartographic service of the government of Aragón. The info on damage and repair costs of the A-136 has been given by the Provincial Roads Service Huesca. Geotechnical reports and survey data of movement on slopes have been granted by ARAMON-Formigal SA. We thank the City of Sallent de Gállego for their cooperation and support in carrying out field campaigns. Piezometric data in the Portalet landslide have been granted by the Department of Exploitation and Exploration of Mines of the Oviedo University. This work was funded by the project “Développement d’Outils pour le Suivi des Mouvements de Sol pour la gestion durable de SUDOE” DO-SMS (SUDOE INTERREG IV B) and the Spanish Geological Survey (IGME).

References

  1. Bamler R, Hartl P (1998) Synthetic aperture radar interferometry. Inverse Problems 14:R1–R54CrossRefGoogle Scholar
  2. Berardino P, Fornaro G, Lanari R, Sansosti E (2002) A new algorithm for surface deformation monitoring based on small baseline differential Interferograms. IEEE Trans Geosci Remote Sens 40(11):2375–2383CrossRefGoogle Scholar
  3. Bixel F, Muller J, Roger P (1985) Carte géologique du Pic du Midi d’Ossau et haut bassin du río Gállego, 1:25.000. Institut de Géodynamique, Université de Bordeaux, Bordeaux, In FrenchGoogle Scholar
  4. Bovenga F, Nutricato R, Refice A, Wasowski J (2006) Application of multi-temporal differential interferometry to slope instability detection in urban/peri-urban areas. Eng Geol 88:219–240CrossRefGoogle Scholar
  5. Catani F, Farina P, Moretti S, Nico G, Strozzi T (2005) On the application of SAR interferometry to geomorphological studies: estimation of landform attributes and mass movements. Geomorphology 66:119–131CrossRefGoogle Scholar
  6. CEDEX (2006) Análisis de la inestabilidad de la ladera donde se encuentra el telesilla B-20 en Formigal (Huesca). Diseño de los trabajos de estabilización necesarios. Informe del laboratorio de Geotécnia. Clave CEDEX: 81-505-5-020, Report. (In Spanish)Google Scholar
  7. Cascini L, Fornaro G, Peduto D (2009) Analysis at medium scale of low-resolution DInSAR data in slow-moving landslide-affected areas. ISPRS J Photogramm Remote Sens 64(6):598–611CrossRefGoogle Scholar
  8. Colesanti C, Ferretti A, Prati C, Rocca F (2003) Monitoring landslides and tectonic motion with the permanent scatterers technique. Eng Geol 68:1–14CrossRefGoogle Scholar
  9. Colesanti C, Wasowski J (2006) Investigating landslides with spaceborne synthetic aperture radar (SAR) interferometry. Eng Geol 88:173–199CrossRefGoogle Scholar
  10. Creus J, Gil M (2001) Clima. In: Rios Aragüés S (ed) Estudio del medio físico y de sus riesgos naturales en un sector del pirineo central. Instituto Geológico y Minero de España, Madrid, pp 39–41, In SpanishGoogle Scholar
  11. Cruden DM, Varnes DJ (1996)—Landslide types and processes. In: Turner AK, Shuster RL (eds) Landslides: Investigation and Mitigation. Transp Res Board, Spec Rep 247, pp 36–75.Google Scholar
  12. Dong YF, Zhang FM, Gao ZX, Kuai ZY (2008) Regional landslide forecasting model using interferometric SAR images. J Cent S Univ Technol 15(2):168–173CrossRefGoogle Scholar
  13. Farina P, Colombo D, Fumagalli A, Marks F, Moretti S (2006) Permanent scatterers for landslide investigations: outcomes from the ESA-SLAM project. Eng Geol 88:200–217CrossRefGoogle Scholar
  14. Ferretti A, Prati C, Rocca F (2001) Permanent scatterers in SAR interferometry. IEEE Trans Geosci Remote Sens 39(1):8–20CrossRefGoogle Scholar
  15. García-Ruiz JM, Lasanta T (1993) Land-use conflicts as a result of land-use change in the central Spanish Pyrenees: a review. Mt Res Dev 13:295–304CrossRefGoogle Scholar
  16. García-Ruiz JM, Chueca J, Julián A (2004) Los movimientos en masa del Alto Gállego. In: Peña JL, Longares LA, Sánchez M, (eds) Geografía Física de Aragón. Aspectos Generales y Temáticos, pp 142–152 (In Spanish)Google Scholar
  17. Goldstein R, Werner C (1997) Radar ice motion interferometry. In: Proc. 3rd ERS Symp., Florence, Italy, 17–20 March 1997, 2:969–972Google Scholar
  18. Gonzalez-Gallego J, Moreno JL, García de la Oliva JL, Pardo de Santayana F (2008) Stabilization of a large paleo-landslide reactivated because of the works to install a new ski lift in Formigal skiing resort. In: Zuyu Chen , Jianmin Zhang , Zhongkui Li , Faquan Wu and Ken Ho (ed) Landslides and Engineered Slopes. From the Past to the Future. Proceedings of the 10th International Symposium on Landslides and Engineered Slopes, 30 June-4 July 2008, Xi‘an, ChinaGoogle Scholar
  19. Greif V, Vlcko J (2011) Monitoring of post-failure landslide deformation by the PS-InSAR technique at lubietova in central Slovakia. Environ Earth Sci 66:1585–1595. doi: 10.1007/s12665-011-0951-x CrossRefGoogle Scholar
  20. Guzzetti F, Manunta M, Ardizzone F, Pepe A, Cardinali M, Zeni G, Reichenbach P, Lanari R (2009) Analysis of ground deformation detected using the SBAS-DInSAR technique in Umbria, Central Italy. Pure appl geophys 166:1425–1459CrossRefGoogle Scholar
  21. Herrera G, Fernández-Merodo JA, Mulas J, Pastor M, Luzi G, Monserrat O (2009a) A landslide forecasting model using ground based SAR data: the portalet case study. Eng Geol 105:220–230CrossRefGoogle Scholar
  22. Herrera G, Davalillo JC, Mulas J, Cooksley G, Monserrat O, Pancioli V (2009b) Mapping and monitoring geomorphological processes in mountainous areas using PSI data: central Pyrenees case study. Nat Hazards Earth Syst Sci 9:1587–1598. doi: 10.5194/nhess-9-1587-2009 CrossRefGoogle Scholar
  23. Herrera G, Notti D, García-Davalillo JC, Mora O, Cooksley G, Sánchez M, Arnaud A, Crosetto M (2011) Analysis with C- and X-band satellite SAR data of the portalet landslide area. Landslides 8:195–206CrossRefGoogle Scholar
  24. Herrera G, Gutiérrez F, García-Davalillo JC, Notti D, Galve JP, Fernández-Merodo JA, Cooksley G (2012) Multi-sensor advanced DInSAR monitoring of very slow landslides: the Tena valley case study (central Spanish Pyrenees). Remote Sens Environ 128:31–43CrossRefGoogle Scholar
  25. Hilley GE, Bürgmann R, Ferretti A, Novali F, Rocca F (2004) Dynamics of slow-moving landslides from permanent scatterer analysis. Science 304:1952–1955CrossRefGoogle Scholar
  26. IGME (1988) Estudio de riesgos geológicos inducidos por varios deslizamientos que afectan a la carretera C-136 (entre el Km 91.600 y 92,500; cerca de la estación de esquí de Formigal). Instituto Geológico y Minero de España, Report. (In Spanish)Google Scholar
  27. Mansour MF, Morgenstern N, Martin CD (2011) Expected damage from displacement of slow-moving slides. Landslides 8:117–131. doi: 10.1007/s10346-010-0227-7 CrossRefGoogle Scholar
  28. Mei S, Poncos V, Froese C (2008) Mapping millimetre-scale ground deformation over the underground coal mines in the frank slide area, Alberta, Canada, using spaceborne InSAR technology. Can J Remote Sens 34(2):113–134CrossRefGoogle Scholar
  29. Meisina C, Zucca F, Notti D, Colombo A, Cucchi A, Savio G, Giannico C, Bianchi M (2008) Geological interpretation of PSInSAR data at regional scale. Sensors 11:7469–7492. doi: 10.3390/s8117469 CrossRefGoogle Scholar
  30. Mulas de la Peña J, Fresno López F (1995) Estudio Geotécnico y de Riesgos Naturales. In: Estudio del Medio Físico y de sus Riesgos Naturales en un Sector del Pirineo Central. Instituto Geológico y Minero de España Report. (In Spanish)Google Scholar
  31. Mulas J, Ponce de León D, Reoyo E (2003) Microzonación sísmica de movimientos de ladera en una zona del Pirineo Central. In: Proc. 2º Congreso Nacional de Ingeniería Sísmica, pp 13–26. (In Spanish)Google Scholar
  32. Notti D, Davalillo JC, Herrera G, Mora O (2010) Assessment of the performance of X-band satellite radar data for landslide mapping and monitoring: upper Tena valley case study. Nat Hazards Earth Syst Sci 10:1865–1875. doi: 10.5194/nhess-10-1865-2010 CrossRefGoogle Scholar
  33. Ríos-Aragüés LM, Galera-Fernández JM, Barettino-Fraile D (1987) Mapa Geológico de España escala 1:50.000 (MAGNA) Nº 145-Sallent. Instituto Geológico y Minero de España. (In Spanish)Google Scholar
  34. Reidel B, Walther A (2008) InSAR processing for the recognition of landslides. Advan Geoci 14:189–194Google Scholar
  35. Rott H, Scheuchl B, Siegel A, Grasemann B (1999) Monitoring very slow slope movements by means of SAR interferometry: a case study from a mass waste above a reservoir in the Ötztal Alps, Austria. Geophys Res Lett 26:1629–1632. doi: 10.1029/1999GL900262 CrossRefGoogle Scholar
  36. Rott H, Nagler T (2006) The contribution of radar interferometry to the assessment of landslide hazards. Adv Space Res 37(4):710–719CrossRefGoogle Scholar
  37. Rosen PA, Hensley S, Joughin IR, Li FK, Madsen SN, Rodríguez E, Goldstein R (2000) Synthetic aperture radar interferometry. Proc IEEE 88(3):333–382CrossRefGoogle Scholar
  38. Singhroy V, Alasset PJ, Froese C (2009) Landslide Monitoring of Vegetated Slopes Using ALOS-PALSAR Images (PI 220). Proc. of ALOS PI 2008 Symposium, 3–7 November 2008, Island of Rhodes, Greece (ESA SP-664, January 2009)Google Scholar
  39. Singhroy V (2009) Satellite remote sensing applications for landslide detection and monitoring. In: Sassa K, Canuti P (eds) Landslides—disaster risk reduction. Springer, Berlin, pp 143–158CrossRefGoogle Scholar
  40. Stimely, LL (2009) Characterizing Landslide Movement at the Boulder Creek Earthflow, Northern California, Using L-band InSAR. University of Oregon theses, Dept. of Geological Sciences, M.S. http://hdl.handle.net/1794/10028
  41. Strozzi T, Farina P, Corsini A, Ambrosi C, Thüring M, Zilger J, Wiesmann A, Wegmüller U, Werner C (2005) Survey and monitoring of landslide displacements by means of L-band satellite SAR interferometry. Landslides 2(3):193–201CrossRefGoogle Scholar
  42. Strozzi T, Wegmüller U, Keusen HR, Graf K, Wiesmann A (2006) Analysis of the terrain displacement along a funicular by SAR interferometry. IEEE Geosci Remote Sens Lett 3(1):15–18CrossRefGoogle Scholar
  43. Strozzi T, Ambrosi C (2007) SAR Interferometric Point Target Analysis and Interpretation of Aerial Photographs for Landslides Investigations in Ticino, Southern Switzerland. Proc. ENVISAT Symposium, Montreux, Switzerland, 23–27 April 2007Google Scholar
  44. Strozzi T, Wegmüller U, Werner C, Wiesmann A, Santoro M, Delaloye R, Raetzo H Ambrosi C (2009) Survey of Landslide activity in the Swiss Alps with ALOS PALSAR. Proc. of ALOS PI 2008 Symposium, 3–7 November 2008, Island of Rhodes, Greece (ESA SP-664, January 2009)Google Scholar
  45. Torrijo Echarri F (2005) Informe sobre las inestabilidades detectadas en una ladera en las inmediaciones del Puerto de Portalet (Sallent de Gállego, Huesca), donde se está ejecutando la construcción de un futuro aparcamiento. Ilustre Colegio Oficial de Geólogos de Aragón, Zaragoza, Spain. Technical Report. (In Spanish)Google Scholar
  46. Werner C, Wegmüller U, Strozzi T, Wiesmann A (2003) Interferometric point target analysis for deformation mapping. Proceedings of IGARSS 2003, Toulouse, France 21–25 July 2003, CDROMGoogle Scholar
  47. Werner C, Wegmüller U, Strozzi T, Wiesmann A, Santoro M (2007) PALSAR Multi-mode Interferometric Processing. Proc. 1st Joint PI Symposium of ALOS Data Nodes, Kyoto, Japan, 19–23 November 2007Google Scholar
  48. Yin Y, Zheng W, Liu Y, Zhang J, Li X (2010) Integration of GPS with InSAR to monitoring of the Jiaju landslide in Sichuan, China. Landslides 7(3):359–365CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Juan Carlos García-Davalillo
    • 1
  • Gerardo Herrera
    • 2
  • Davide Notti
    • 3
  • Tazio Strozzi
    • 4
  • Inmaculada Álvarez-Fernández
    • 5
  1. 1.Valencia Unit, Geo-Hazard InSAR Laboratory Geological Risk GroupInstituto Geológico y Minero de España (IGME)ValenciaSpain
  2. 2.Geo-Hazard InSAR Laboratory Geological Risk GroupInstituto Geológico y Minero de España (IGME)MadridSpain
  3. 3.Department of earth and environmental scienceUniversity of PaviaPaviaItaly
  4. 4.Gamma Remote SensingGümligenSwizerland
  5. 5.Department of Mining EngineeringUniversity of OviedoOviedoSpain

Personalised recommendations