, Volume 10, Issue 5, pp 529–546 | Cite as

Tier-based approaches for landslide susceptibility assessment in Europe

  • Andreas GüntherEmail author
  • Paola Reichenbach
  • Jean-Philippe Malet
  • Miet Van Den Eeckhaut
  • Javier Hervás
  • Claire Dashwood
  • Fausto Guzzetti
Original Paper


In the framework of the European Soil Thematic Strategy and the associated proposal of a Framework Directive on the protection and sustainable use of soil, landslides were recognised as a soil threat requiring specific strategies for priority area identification, spatial hazard assessment and management. This contribution outlines the general specifications for nested, Tier-based geographical landslide zonings at small spatial scales to identify priority areas susceptible to landslides (Tier 1) and to perform quantitative susceptibility evaluations within these (Tier 2). A heuristic, synoptic-scale Tier 1 assessment exploiting a reduced set of geoenvironmental factors derived from common pan-European data sources is proposed for the European Union and adjacent countries. Evaluation of the susceptibility estimate with national-level landslide inventory data suggests that a zonation of Europe according to, e.g. morphology and climate, and performing separate susceptibility assessments per zone could give more reliable results. To improve the Tier 1 assessment, a geomorphological terrain zoning and landslide typology differentiation are then applied for France. A multivariate landslide susceptibility assessment using additional information on landslide conditioning and triggering factors, together with a historical catalogue of landslides, is proposed for Tier 2 analysis. An approach is tested for priority areas in Italy using small administrative mapping units, allowing for relating socioeconomic census data with landslide susceptibility, which is mandatory for decision making regarding the adoption of landslide prevention and mitigation measures. The paper concludes with recommendations on further work to harmonise European landslide susceptibility assessments in the context of the European Soil Thematic Strategy.


Small-scale landslide zoning Heuristic Tier 1 assessment Statistical Tier 2 assessment European soil Thematic strategy Common landslide susceptibility criteria Europe 



This work was conducted in the framework of the activities of the European Landslide Expert Group on “Guidelines for Mapping Areas at Risk of Landslides in Europe” ( and of the International Consortium on Landslides project IPL-162 “Tier-based harmonised approach for landslide susceptibility mapping over Europe”. We thank the other members of the European Landslide Expert Group (J. Chaćon, P. Hobbs, O. Maquaire, A. Pasuto, E. Poyiadji, F. Tagliavini and A. Trigilia) for all the fruitful discussions. We are indebted to D. Kirschbaum Bach (NASA) for providing the portion for Europe of the global landslide susceptibility map of Hong et al. (2007). We thank L. Montanarella (JRC) and R. Baritz (BGR) for the support. We also like to thank two anonymous reviewers and the journal editor for their valuable comments that helped to improve the presentation. FG and PR are supported by the EU-FP7 DORIS project (, EC contract no. 242212.


  1. Asch K (2005) The 1:5 million international geological map of Europe and adjacent areas (IGME 5000). Bundesanstalt für Geowissenschaften und Rohstoffe, HannoverGoogle Scholar
  2. Ayalew L, Yamagishi H, Ugawa N (2004) Landslide susceptibility mapping using GIS-based weighted linear combination, the case in Tsugawa area of Agano River, Niigata Prefecture, Japan. Landslides 1:73–81CrossRefGoogle Scholar
  3. Barredo JI, Benavides A, Hervás J, van Westen CJ (2000) Comparing heuristic landslide hazard assessment techniques using GIS in the Tirajana Basin, Gran Canaria Island, Spain. Int J Appl Earth Obs Geoinformation 2:9–23CrossRefGoogle Scholar
  4. Brabb EE (1984) Innovative approaches to landslide hazard mapping. Proc 4th Int Symp Landslides, Toronto, 1:307-324Google Scholar
  5. BRGM (2005) The geological map of France 1:1 million. Bureau de Recherches Géologiques et Minières, ParisGoogle Scholar
  6. Brown CE (1998) Applied multiple statistics in geohydrology and related sciences. Springer, New YorkCrossRefGoogle Scholar
  7. Castellanos Abella EA, van Westen C (2008) Qualitative landslide susceptibility assessment by multicriteria analysis: a case study from San Antonio del Sur, Guantánamo, Cuba. Geomorphology 94:453–466CrossRefGoogle Scholar
  8. Chung C-JF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazard 30(3):451–472CrossRefGoogle Scholar
  9. Committee on the Review of the National Landslide Hazards Mitigation Strategy (2004) Partnerships for reducing landslide risk: assessment of the National Landslide Hazards Mitigation Strategy. National Academies, WashingtonGoogle Scholar
  10. Compagnoni B, Damiani AV, Valletta M, Finetti I, Cirese E, Pannuti S, Sorrentino F, Rigano C (eds) (1976–1983) Carta Geologica d'Italia. Servizio Geologico d'Italia, Stabilimento Salomone, Rome, scale 1:500,000, 5 sheetsGoogle Scholar
  11. EC (2006a) Thematic Strategy for Soil Protection. COM(2006)231 final. Commission of the European Communities, Brussels, BelgiumGoogle Scholar
  12. EC (2006b) Proposal for a Directive of the European Parliament and of the Council establishing a framework for the protection of soil and amending Directive 2004/35/EC. COM(2006)232 final. Commission of the European Communities, Brussels, BelgiumGoogle Scholar
  13. EC (2009) A community approach on the prevention of natural and man-made disasters. COM(2009) 82 final, 23.2.2009, Brussels, BelgiumGoogle Scholar
  14. EC (2010) Risk assessment and mapping guidelines for disaster management. SEC(2010) 1626 final, 21.12.2010, Brussels, BelgiumGoogle Scholar
  15. EC (2012) The implementation of the Soil Thematic Strategy and ongoing activities. Report from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions, COM(2012) 46, Brussels, Belgium.Google Scholar
  16. Eckelmann W, Baritz R, Bialousz S, Bielek P, Carre F, Houskova B, Jones RJA, Kibblewhite MG, Kozak J, Le Bas C, Toth G, Varallyay G, Yli Halla M, Zupan M (2006) Common criteria for risk area identification according to soil threats. European Soil Bureau Research Report No. 20, EUR 22185 EN. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  17. Evans H, Pennington C, Foster C (2012). Mapping a nation's landslides: a novel multistage methodology. Proceedings of the 2nd World Landslide Forum, 3-9 October 2011, Rome, Italy (in press)Google Scholar
  18. Fawcett T (2006) An introduction to ROC analysis. Pattern Recog Lett 27:861–874CrossRefGoogle Scholar
  19. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98CrossRefGoogle Scholar
  20. Figueira J, Greco S, Ehrgott M (2005) Multiple criteria decision analysis: state of the art surveys. Springer, New YorkGoogle Scholar
  21. Finke P, Hartwich R, Dudal R, Ibàñez J, Jamagne M, King D, Montanarella L, Yassoglou N (2001) Georeferenced soil database for Europe, Manual of procedures, Version 1.1. European Soil Bureau Research Report No. 5, EUR 18092 EN. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  22. Fisher RA (1936) The use of multiple measurements in taxonomic problems. Ann Eugenics 7:179–188CrossRefGoogle Scholar
  23. Foster C, Gibson A, Wildman G (2008) The new national landslide database and landslide hazard assessment of Great Britain. Proceedings of the First World Landslide Forum, Tokyo, 18-21 November 2008, pp 203-206Google Scholar
  24. Glade T, Anderson MG, Crozier MJ (eds) (2005) Landslide risk assessment. Wiley, New YorkGoogle Scholar
  25. Gorsevski PV, Jankowski P, Gessler PE (2006) An heuristic approach for mapping landslide hazard by integrating fuzzy logic with analytic hierarchy process. Control Cybern 35(1):121–146Google Scholar
  26. Günther A, Van Den Eeckhaut M, Reichenbach P, Hervás J, Malet JP, Foster C, Guzzetti F (2012). New developments in harmonized landslide susceptibility mapping over Europe in the framework of the European Soil Thematic Strategy. Proceedings of the 2nd World Landslide Forum, 3-9 October, 2011, Rome, Italy (in press)Google Scholar
  27. Günther A, Reichenbach P, Hervás J (2008) Approaches for delineating areas susceptible to landslides in the framework of the European Soil Thematic Strategy. Proceedings of the First World Landslide Forum, Tokyo, 18-21 November 2008, pp. 235-238Google Scholar
  28. Guzzetti F, Reichenbach P (1994) Toward the definition of topographic divisions of Italy. Geomorphology 11:57–74CrossRefGoogle Scholar
  29. Guzzetti F, Tonelli G (2004) Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslides and flood hazards in Italy. Nat Hazards Earth Syst Sci 4:213–232CrossRefGoogle Scholar
  30. Guzzetti F, Cardinali M, Reichenbach P (1994) The AVI Project: a bibliographical and archive inventory of landslides and floods in Italy. Environ Manag 18:623–633CrossRefGoogle Scholar
  31. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: an aid to a sustainable development. Geomorphology 31:181–216CrossRefGoogle Scholar
  32. Guzzetti F, Reichenbach P, Ardizzone A, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184CrossRefGoogle Scholar
  33. Heineke HJ, Eckelmann W, Thomasson AJ, Jones RJA, Montanarella L, Buckley B (eds) (1998) Land information systems: developments for planning the sustainable use of land resources. European Soil Bureau Research Report No. 4, EUR 17729 EN. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  34. Hervás J, Günther A, Reichenbach P, Chacón J, Pasuto A, Malet J-P, Trigila A, Hobbs P, Maquaire O, Tagliavini F, Poyiadji E, Guerrieri L, Montanarella L (2007) Recommendations on a common approach for mapping areas at risk of landslides in Europe. In: Hervás J (ed), Guidelines for mapping areas at risk of landslides in Europe. Proceedings Experts Meeting, Ispra, Italy, 23–24 October 2007. JRC Report EUR 23093 EN. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  35. Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256CrossRefGoogle Scholar
  36. Jaedicke C, Van Den Eeckhaut M, Nadim F, Hervás J, Kalsnes B, Smith T, Tofani V, Ciurean R, Winter M (2011) Identification of landslide hazard and risk “hotspots” in Europe. Geophysical Research Abstracts 13, EGU2011-10398Google Scholar
  37. Jenks GF (1967) The data model concept in statistical mapping. Int Yearb Cartogr 7:186–190Google Scholar
  38. Kirschbaum DB, Adler R, Hong Y, Lerner-Lam A (2009) Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat Hazards Earth Syst Sci 9:673–686CrossRefGoogle Scholar
  39. L’Abate G, Costantini EAC (2004). GIS pedoclimatico d’Italia. Progetto PANDA. Istituto Sperimentale Studio e Difesa del Suolo, Centro Nazionale Cartografia Pedologica. Firenze, Italia. CD-Rom (
  40. Mancini F (ed) (1966) Soil map of Italy. Società Geografica, A.GA.F-A. and R. Senatori Publisher, scale 1:1,000,000Google Scholar
  41. Malet JP, Puissant A, Mathieu A, Van Den Eeckhaut M, Fressard M (2012). Landslide susceptibility assessment at 1:1 M scale for France. Geomorphology, 15pGoogle Scholar
  42. Malet JP, Thiery Y, Puissant A, Hervás J, Günther A, Grandjean G (2009) Landslide susceptibility mapping at 1:1 M scale over France: exploratory results with a heuristic model. In: Malet J-P, Remaître A, Boogard TA (eds) Proceedings of the international conference on landslide processes: from geomorphologic mapping to dynamic modelling. CERG Editions, Strasbourg, pp 315–320Google Scholar
  43. Mason SJ, Graham NE (2002) Areas beneath the relative operating characteristics (ROC) and relative operating levels (ROL) curves: statistical significance and interpretation. Q J Royal Meteo Soc 128:2145–2166CrossRefGoogle Scholar
  44. MATE/METL (1999) Plan de Prévention des Risques (PPR)—Risques de Mouvements de terrain. Guide Méthodologique. Ministère de l'Aménagement du Territoire et de l'Environnement (MATE), Ministère de l'Equipement des Transports et du Logement (METL), La Documentation Française, Paris, 45 ppGoogle Scholar
  45. Metz CE (1978) Basic principles of ROC analysis. Semin Nucl Med 8:283–298CrossRefGoogle Scholar
  46. Michie D, Spiegelhalter DJ, Taylor CC (eds) (1994) Machine learning, neural and statistical classification. Internet version (
  47. Mora S, Vahrson W (1994) Macrozonation methodology for landslide hazard determination. Bull Assoc Eng Geol 31(1):49–58Google Scholar
  48. Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173CrossRefGoogle Scholar
  49. Nordregio (2004) Mountain areas in Europe: analysis of mountain areas in EU member states, acceding and other European countries. Brussels: Final Report EC Project No 2002.CE.16.0.AT.136Google Scholar
  50. Panagos P, Van Liedekerke M, Jones A, Montanarella L (2012) European Soil Data Centre: response to European policy support and public data requirements. Land Use Policy 29(2):329–338CrossRefGoogle Scholar
  51. Remondo J, González-Díez A, Díaz de Terán JR, Cendrero A, Fabbri A, Chung CJF (2003) Validation of landslide susceptibility maps; examples and applications from a case study in Northern Spain. Nat Hazards 30(3):437–449CrossRefGoogle Scholar
  52. Rudolf B, Beck C, Grieser J, Schneider U (2005) Global precipitation analysis products. Deutscher Wetterdienst, Offenbach a. MGoogle Scholar
  53. Saaty T (1980) The analytical hierarchy process. McGraw Hill, New YorkGoogle Scholar
  54. Saaty T, Vargas LG (1984) Comparison of eigenvalue and logarithmic least squares and least squares methods in estimating ratios. Math Model 5:309–324CrossRefGoogle Scholar
  55. Schmidt-Thomé P (2006) Natural and technological hazards and risks affecting the spatial development of European regions. Geol Surv Finl Spec Pap 42:17–63Google Scholar
  56. Trigila A, Iadanza C, Spizzichino D (2010) Quality assessment of the Italian Landslide Inventory using GIS processing. Landslides 7:455–470CrossRefGoogle Scholar
  57. Van Den Eeckhaut M, Hervás J (2012) State of the art of national landslide databases in Europe and their potential for assessing landslide susceptibility, hazard and risk. Geomorphology 139–140:545–558CrossRefGoogle Scholar
  58. Van Den Eeckhaut M, Hervás J, Jaedicke C, Malet JP, Montanarella L, Nadim F (2011) Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data. Landslides. doi: 10.1007/s10346-011-0299-z
  59. van Westen CJ, Van Asch TWJ, Soeters R (2005) Landslide hazard and risk zonation: why is it still so difficult? Bull Eng Geol Environ 65:167–184CrossRefGoogle Scholar
  60. van Westen CJ, Castellanos E, Kuriakose SL (2009) Spatial data for landslide susceptibility, hazard and vulnerability assessment: an overview. Eng Geol 102:112–131CrossRefGoogle Scholar
  61. Varnes DJ (1978) Slope movements: types and processes. In: Schuster RL, Krizek RJ (eds) Landslide analysis and control, National Academy of Sciences, Transportation Research Board Special Report 176, Washington, pp 11-33Google Scholar
  62. Voogd H (1983) Multi-criteria evaluation for urban and regional planning. Pion, LondonGoogle Scholar
  63. Willmott CJ, Feddema JJ (1992) A more rational climatic moisture index. Prof Geogr 44(1):84–88CrossRefGoogle Scholar
  64. Yalcin A (2008) GIS-based landslide susceptibility mapping using analytical hierarchy process and bivariate statistics in Ardesen (Turkey): comparisons of results and confirmations. Catena 72(1):1–12CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • Andreas Günther
    • 1
    Email author
  • Paola Reichenbach
    • 2
  • Jean-Philippe Malet
    • 3
  • Miet Van Den Eeckhaut
    • 4
  • Javier Hervás
    • 4
  • Claire Dashwood
    • 5
  • Fausto Guzzetti
    • 2
  1. 1.Federal Institute for Geosciences and Natural ResourcesHannoverGermany
  2. 2.Consiglio Nazionale delle RicercheIstituto di Ricerca per la Protezione IdrogeologicaPerugiaItaly
  3. 3.Institut de Physique du Globe de Strasbourg (CNRS UMR 7516)Université de Strasbourg/EOSTStrasbourgFrance
  4. 4.Institute for Environment and Sustainability, Joint Research CentreEuropean CommissionIspraItaly
  5. 5.British Geological SurveyNottinghamUK

Personalised recommendations