Advertisement

Landslides

, Volume 10, Issue 1, pp 37–54 | Cite as

Control of landslide retrogression by discontinuities: evidence by the integration of airborne- and ground-based geophysical information

  • J. Travelletti
  • J.-P. Malet
  • K. Samyn
  • G. Grandjean
  • M. Jaboyedoff
Original Paper

Abstract

The objective of this work is to present a multitechnique approach to define the geometry, the kinematics, and the failure mechanism of a retrogressive large landslide (upper part of the La Valette landslide, South French Alps) by the combination of airborne and terrestrial laser scanning data and ground-based seismic tomography data. The advantage of combining different methods is to constrain the geometrical and failure mechanism models by integrating different sources of information. Because of an important point density at the ground surface (4. 1 points m−2), a small laser footprint (0.09 m) and an accurate three-dimensional positioning (0.07 m), airborne laser scanning data are adapted as a source of information to analyze morphological structures at the surface. Seismic tomography surveys (P-wave and S-wave velocities) may highlight the presence of low-seismic-velocity zones that characterize the presence of dense fracture networks at the subsurface. The surface displacements measured from the terrestrial laser scanning data over a period of 2 years (May 2008–May 2010) allow one to quantify the landslide activity at the direct vicinity of the identified discontinuities. An important subsidence of the crown area with an average subsidence rate of 3.07 m year–1 is determined. The displacement directions indicate that the retrogression is controlled structurally by the preexisting discontinuities. A conceptual structural model is proposed to explain the failure mechanism and the retrogressive evolution of the main scarp. Uphill, the crown area is affected by planar sliding included in a deeper wedge failure system constrained by two preexisting fractures. Downhill, the landslide body acts as a buttress for the upper part. Consequently, the progression of the landslide body downhill allows the development of dip-slope failures, and coherent blocks start sliding along planar discontinuities. The volume of the failed mass in the crown area is estimated at 500,000 m3 with the sloping local base level method.

Keywords

Slope failure ALS data TLS data Seismic tomography Discontinuity Geological model 

Notes

Acknowledgements

This work was supported by the European Commission under the Marie Curie Contract Mountain risks: from prediction to management and governance” (FP6, MCRTN-035798; 2007–2010) and by the French Ministry of Research within the project “SISCA: Système Intégré de Surveillance de Crises de glissements de terrain argileux” (Contract ANR Risk-Nat, 2009–2012). The authors would like to acknowledge Mr. Georges Guiter and Mr. Michel Peyron from Restauration des Terrains en Montagne (Office of Barcelonnette) for their assistance and discussion in the field. The authors are also grateful to Mr. Grzegorz Skupinski (University of Strasbourg) for his support in the acquisition of the TLS data. The authors are also grateful to two anonymous reviewers for their constructive comments.

References

  1. Agliardi F, Crosta G, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59:83–102CrossRefGoogle Scholar
  2. Bitelli G, Dubbini M, Zanutta A (2004) Terrestrial laser scanning and digital photogrammetry techniques to monitor landslide bodies. In: Proceedings of the XXth ISPRS Congress ‘Geo-Imagery Bridging Continents’, XXXV, Part B5, Istanbul, Turkey, 12–23 July 2004, ISPRS, pp 246–251Google Scholar
  3. Caris JPT, van Asch ThWJ (1991) Geophysical, geotechnical and hydrological investigations of a small landslide in the French Alps. Eng Geol 31(3–4):249–276Google Scholar
  4. Casson B, Delacourt C, Allemand P (2005) Contribution of multi-temporal sensing images to characterize landslide slip surface—application to the La Clapière landslide (France). Nat Hazard Earth Syst Sci 5:425–437CrossRefGoogle Scholar
  5. Caumon G, Collon-Drouaillet P, Carlier L, de Veslud C, Sausse J, Visuer S (2009) Teacher's aide: 3D modeling of geological structures. Math Geosci 41(9):927–945CrossRefGoogle Scholar
  6. Colas G, Locat J (1993) Glissement et coulée de La Valette dans les Alpes-de-Haute-Provence. Présentation générale et modélisation de la coulée. Bulletin de Liaison des Laboratoires des Ponts et Chaussées 187:19–28Google Scholar
  7. Cornforth DH (2005) Landslides in practice: investigation, analysis and remedial/preventative options in soils. Wiley, USA, 625Google Scholar
  8. Crosta GB, Agliardi F (2003) Failure forecast for large rock slides by surface displacement measurements. Can Geotech J 40:176–191CrossRefGoogle Scholar
  9. Cruden DM (1976) Major slides in the Rockies. Can Geotech J 13:8–20CrossRefGoogle Scholar
  10. Cruden DM, Martin CD (2004) Before the Frank Slide: preparatory & triggering causes from maps and photographs. In: Proceedings of the 57th Canadian Geotechnical Conference, GeoQuébec 2004Google Scholar
  11. Déprez A, Malet J-P, Masson F, Ulrich P (2010) (submitted) Continuous monitoring and near-real time processing of GPS observations for landslide analysis: a methodological framework. Engineering Geology, (submitted)Google Scholar
  12. Dupont M, Taluy P (2000) Hydrogéologie du glissement de La Valette (avec carte au 1:5000è des venues d’eau). Internal Report, Université de Savoie, Chambéry, France, p 45 http://eost.u-strasbg.fr/omiv/Publications_la_valette.html
  13. Eberhardt E, Thuro K, Luginbuehl M (2005) Slope instability mechanisms in dipping interbedded conglomerates and weathered marls—the 1999 Rufi landslide, Switzerland. Eng Geol 77:35–56CrossRefGoogle Scholar
  14. Evin M (1992) Prospection sismique en partie basse de la coulée de La Valette. Internal Report, RTM—restauration des Terrains en Montagne, Barcelonnette, France http://eost.u-strasbg.fr/omiv/Publications_la_valette.html
  15. Feng QH, Röshoff K (2004) In-situ mapping and documentation of rock faces using a full-coverage 3-D laser scanning technique. Int J Rock Mech Min Sci 41:139–144CrossRefGoogle Scholar
  16. Golts S, Rosenthal E (1993) A morphotectonic map of the northern Arava in Israel derived from isobase lines. Geomorphology 7:305–315CrossRefGoogle Scholar
  17. Gosar A, Stopar R, Car M, Mucciarelli M (2001) The earthquake on 12 April 1998 in the Krn mountains (Slovenia): ground-motion amplification study using microtremors and modelling based on geophysical data. J Appl Geophys 47:153–167CrossRefGoogle Scholar
  18. Grandjean G, Pennetier C, Bitri A, Méric O, Malet JP (2006) Caractérisation de la structure interne et de l'état hydrique de glissements argilo-marneuxpar tomographie géophysique: l'exemple du glissement-coulée de Super-Sauze. Comptes Rendus Géosciences 338(9):587–595CrossRefGoogle Scholar
  19. Grandjean G, Malet J-P, Bitri A, Méric O (2007) Geophysical data fusion by fuzzy logic for imaging the mechanical behaviour of mudslides. Bull Soc Géol Fr 178(2):127–136Google Scholar
  20. Hermann RB (1987) Computer programs in seismology. Saint-Louis University, Saint-Louis, MO, USA, 317Google Scholar
  21. Hoek E, Bray JW (2004) Rock slope engineering. Civil and mining, Fourth Edition. Institute of Mining and Metallurgy, London, UK, p 456Google Scholar
  22. InnovMetric (2009) PolyWorks User's manual—3-D scanner and 3-D digitizer software from InnovMetric Software Inc., http://www.innovmetric.com/
  23. International Society for Rock Mechanics (ISRM) (1981) Rock characterization, testing and monitoring; ISRM Suggested Method. Pergamon Press, Oxford, UKGoogle Scholar
  24. Irfan TY (1998) Structurally controlled landslides in saprolitic soils in Hong Kong. J Geotech Geol Eng 16:215–238CrossRefGoogle Scholar
  25. Jaboyedoff M, Ornstein P, Rouiller JD (2004a) Design of a geodetic database and associated tools for monitoring rock-slope movements: the example of the top of Randa rockfall scar. Nat Hazard Earth Syst Sci 4:187–196CrossRefGoogle Scholar
  26. Jaboyedoff M, Baillifard F, Couture R, Locat J, Locat P (2004b) New insight of geomorphology and landslide prone area detection using DEM. In: Lacerda WA, Ehrlich M, Fontoura AB, Sayo A (eds) Landslides evaluation and stabilization. Balkema, Rotterdam, pp 199–205Google Scholar
  27. Jaboyedoff M, Couture R, Locat P (2009) Structural analysis of Turtle Mountain (Alberta) using digital elevation model: toward a progressive failure. Geomorphology 103:6–16CrossRefGoogle Scholar
  28. Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bull Soc Géol Fr 178(2):101–112Google Scholar
  29. Jongmans D, Bièvre G, Renalier F, Schwartz S, Beaurez N, Orengo Y (2009) Geophysical investigation of a large landslide in glaciolacustrine clays in the Trièves area (French Alps). Eng Geol 109:45–56CrossRefGoogle Scholar
  30. Le Mignon G (2004) Analyse de scénarios de mouvements de versants de type glissement-coulées. Application à la région de Barcelonnette (Alpes-de-Haute-Provence, France). PhD Thesis, Ecole Nationale des Ponts et Chaussées, Paris, France, p 210Google Scholar
  31. Le Mignon G, Cojean R (2002) Rôle de l’eau dans la remobilisation de glissements-coulées (Barcelonnette, France). In: Wagner P, Rybar J, Stemberk J (eds) Proceedings of the first European Conference on Landslides. Czech Republic, Prague, pp 239–244Google Scholar
  32. Lee BU, Kim CM, Park RH, Nurre JH, Corner BR (1999) Error sensitivity of rotation angles in the ICP algorithm. SPIE Proc Ser A 3640:146–156CrossRefGoogle Scholar
  33. LePrince S, Berthier E, Ayoub F, Delacourt C, Avouac J-P (2008) Monitoring earth surface dynamics with Optical Imagery. Eos 89:1–5CrossRefGoogle Scholar
  34. Leroueil S (2001) Natural slopes and cuts: movement and failure mechanisms. Geotechnique 51:197–243CrossRefGoogle Scholar
  35. McMechan GA, Yedlin MJ (1981) Analysis of dispersive waves by wave field transformation. Geophysics 46:869–874CrossRefGoogle Scholar
  36. Méric O, Garambois S, Cadet H, Malet JP, Guéguen P, Jongmans D (2007) Seismic noise based methods for soil landslide characterization. Bull Soc Géol Fr 178(2):137–148Google Scholar
  37. Mills HH (2003) Inferring erosional resistance of bedrock units in the East Tennessee mountains from digital elevation data. Geomorphology 55:263–281CrossRefGoogle Scholar
  38. BRGM (Bureau des Recherches Géologiques et Minières) (1974) Carte et notice géologique de Barcelonnette au 1:50.000è. XXXV-39. Orléans, France, p 38Google Scholar
  39. Monserrat O, Crosetto M (2008) Deformation measurement using terrestrial laser scanning data and least squares 3-D surface matching. ISPRS J Photogramm 63:142–154CrossRefGoogle Scholar
  40. Oppikofer T, Jaboyedoff M, Blikra LH, Derron MH, Metzger R (2009) Characterization and monitoring of the Aknes rockslide using terrestrial laser scanning. Nat Hazards Earth Syst Sci 9:1003–1019CrossRefGoogle Scholar
  41. Prokop A, Panholzer H (2009) Assessing the capability of terrestrial laser scanning for monitoring slow moving landslides. Nat Hazard Earth Syst Sci 9:1921–1928CrossRefGoogle Scholar
  42. Richards LR, Leg GMM, Whittle RA (1978) Appraisal of stability conditions in rock slopes. In: Bell FG (ed) Foundation engineering in difficult ground. Newnes-Butterworths, London, pp 449–512Google Scholar
  43. Rosser NJ, Petley DN, Dunning SA, Lim M, Ball S (2007) The surface expression of strain accumulation in failing rock masses. In: Eberhardt E, Stead D, Morrison T (eds) Rock mechanics: meeting Society's challenges and demands. Proceedings of the 1st Canada–U.S. Rock Mechanics Symposium, Vancouver, Canada, 27–31 May 2007, Taylor & Francis, pp. 113–120Google Scholar
  44. Sartori M, Baillifard F, Jaboyedoff M, Rouiller JD (2003) Kinematic of the 1991 Randa rockfall (Valais, Switzerland). Nat Hazard Earth Syst Sci 3:423–433CrossRefGoogle Scholar
  45. Sauchyn DJ, Cruden DM, Hu HQ (1998) Structural control of the morphometry of open rock basins, Kananaskis region, southwestern Alberta. Geomorphology 22:313–324CrossRefGoogle Scholar
  46. Schuster GT, Quintus-Bosz A (1993) Wavepath eikonal traveltime inversion: theory. Geophysics 58:1314–1337CrossRefGoogle Scholar
  47. Slob S, Hack R (2004) 3D Terrestrial Laser Scanning as a new field measurements and monitoring technique. In: Hack R, Azzam R, Charlier R (eds) Engineering geology for infrastructure planning in Europe. A European perspective. Lecture Note in Earth Sciences. Springer, Berlin-Heidelberg, pp 179–190CrossRefGoogle Scholar
  48. Squarzoni C, Delacourt C, Allemand P (2003) Nine years of spatial and temporal evolution of the La Valette landslide observed by SAR interferometry. Eng Geol 68:53–66CrossRefGoogle Scholar
  49. Squarzoni C, Delacourt C, Allemand P (2005) Differential single-frequency GPS monitoring of the La Valette landslide (French Alps). Eng Geol 79:215–229CrossRefGoogle Scholar
  50. Tarantola A (2005) Inverse problem theory and methods for model parameter estimation. SIAM—Society for Industrial and Applied Mathematics, Philadelphia, U.S.A, p 342Google Scholar
  51. Teza G, Galgaro A, Zaltron N, Genevois R (2007) Terrestrial laser scanner to detect landslide displacement fields: a new approach. Int J Remote Sens 28:3425–3446CrossRefGoogle Scholar
  52. Travelletti J, Malet J-P (2011) Characterization of the 3D geometry of flow-like landslides: a methodology based on the integration of heterogeneous multi-source data. Eng Geol. doi: 10.1016/j.enggeo.2011.05.003
  53. Travelletti J, Oppikofer T, Delacourt C, Malet J-P, Jaboyedoff M (2008) Monitoring landslides displacements during a controlled rain experiment using a long-range terrestrial laser scanning (TLS). In: ISPRS—The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B5, pp. 485–490Google Scholar
  54. Travelletti J, Malet J-P, Hibert C, Grandjean G (2009) Integration of geomorphological, geophysical and geotechnical data to define the 3D morpho-structure of the La Valette mudslide (Ubaye Valley, French Alps). In: Malet J-P, Remaître A, Boogard T (eds) Proceedings of the International Conference on Landslide Processes: from geomorphologic mapping to dynamic modelling, Strasbourg, CERG Editions, pp 203-208Google Scholar
  55. Travelletti J, Demand J, Jaboyedoff M, Marillier F (2010) Mass movement characterization using a reflection and refraction seismic survey with the sloping local base level concept. Geomorphology 116:1–10CrossRefGoogle Scholar
  56. Travelletti J, Delacourt C, Allemand P, Malet J-P, Schmittbuhl J, Toussaint R, Bastard M (2011) (submitted) Correlation of multi-temporal ground-based images for landslide monitoring: application, potential and limitations. ISPRS Journal of Photogrammetry and Remote Sensing (submitted).Google Scholar
  57. Vallet J, Skaloud J (2004) Development and experiences with a fully-digital handheld mapping system operated from a helicopter. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Istanbul, Vol. XXXV, Part B5Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • J. Travelletti
    • 1
    • 2
  • J.-P. Malet
    • 1
  • K. Samyn
    • 3
  • G. Grandjean
    • 3
  • M. Jaboyedoff
    • 4
  1. 1.Institut de Physique du Globe de Strasbourg, CNRS UMR 7516University of Strasbourg (EOST)Strasbourg CedexFrance
  2. 2.GEOPHEN-LETG, CNRS UMR 6554University of Caen Basse-NormandieCaen CedexFrance
  3. 3.Bureau des Recherches Géologiques et Minières (BRGM)OrléansFrance
  4. 4.Institute of Geomatics and Analysis of Risk (IGAR)University of LausanneLausanneSwitzerland

Personalised recommendations