, Volume 9, Issue 3, pp 357–369 | Cite as

Statistical modelling of Europe-wide landslide susceptibility using limited landslide inventory data

  • M. Van Den Eeckhaut
  • J. Hervás
  • C. Jaedicke
  • J.-P. Malet
  • L. Montanarella
  • F. Nadim
Original Paper


In many regions, the absence of a landslide inventory hampers the production of susceptibility or hazard maps. Therefore, a method combining a procedure for sampling of landslide-affected and landslide-free grid cells from a limited landslide inventory and logistic regression modelling was tested for susceptibility mapping of slide- and flow-type landslides on a European scale. Landslide inventories were available for Norway, Campania (Italy), and the Barcelonnette Basin (France), and from each inventory, a random subsample was extracted. In addition, a landslide dataset was produced from the analysis of Google Earth images in combination with the extraction of landslide locations reported in scientific publications. Attention was paid to have a representative distribution of landslides over Europe. In total, the landslide-affected sample contained 1,340 landslides. Then a procedure to select landslide-free grid cells was designed taking account of the incompleteness of the landslide inventory and the high proportion of flat areas in Europe. Using stepwise logistic regression, a model including slope gradient, standard deviation of slope gradient, lithology, soil, and land cover type was calibrated. The classified susceptibility map produced from the model was then validated by visual comparison with national landslide inventory or susceptibility maps available from literature. A quantitative validation was only possible for Norway, Spain, and two regions in Italy. The first results are promising and suggest that, with regard to preparedness for and response to landslide disasters, the method can be used for urgently required landslide susceptibility mapping in regions where currently only sparse landslide inventory data are available.


Susceptibility map Logistic regression modelling Limited landslide inventory Continental scale Validation 


  1. Allison PD (2001) Logistic regression using the SAS system: theory and application. Wiley Interscience, New York, USAGoogle Scholar
  2. APAT (2007) Rapporto sulle frane in Italia: il progetto IFFI, metodologia, resultati e rapporti regionali. Rapporto 78/2007. Agenzia per la protezione dell’ambiente e per i servizi tecnici, Rome, ItalyGoogle Scholar
  3. Asch K (2005) The 1:5 Million International Geological Map of Europe and Adjacent Areas (IGME5000) map. Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover, GermanyGoogle Scholar
  4. Ayalew L, Yamagishi H (2005) The application of GIS-based logistic regression for landslide susceptibility mapping in the Kakuda-Yahiko Mountains, Central Japan. Geomorphology 65:15–31. doi:10.1016/j.geomorph.2004.06.010 CrossRefGoogle Scholar
  5. Bǎlteanu D, Chendeş V, Sima M, Enciu P (2010) A country level spatial assessment of landslide susceptibility in Romania. Geomorphology 124:102–112. doi:10.1016/j.geomorph.2010.03.005 CrossRefGoogle Scholar
  6. Beguería S (2006) Validation and evaluation of predictive models in hazard assessment and risk management. Nat Hazards 37:315–329. doi:10.1007/s11069-005-5182-6 CrossRefGoogle Scholar
  7. Bentley SP, Smalley IJ (1984) Landslips in sensitive clays. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, Chichester, UK, pp 457–490Google Scholar
  8. Bromhead EN, Ibsen ML (2006) A review of landsliding and coastal erosion damage to historic fortifications in South East England. Landslides 3:341–347. doi:10.1007/s10346-006-0063-y CrossRefGoogle Scholar
  9. Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, The Netherlands, pp 135–175Google Scholar
  10. Carrara A, Crosta GB, Frattini P (2008) Comparing models of debris-flow susceptibility in the alpine environment. Geomorphology 94:353–378. doi:10.1016/j.geomorph.2006.10.033 CrossRefGoogle Scholar
  11. Chung CJF, Fabbri AG (2003) Validation of spatial prediction models for landslide hazard mapping. Nat Hazards 30:451–472CrossRefGoogle Scholar
  12. Ciesing (Center for International Earth Science Information Network, Columbia University), IFPRI (International Food Policy Research Institute), CIAT (Centro Internacional de Agricultura Tropical) (2004) Global rural–urban mapping project (GRUMP): Gridded population of the world, version 3, with urban reallocation (GPW-UR). Palisades, New YorkGoogle Scholar
  13. CRED (2011) EM-DAT: The OFDA/CRED International Disaster Database. Centre for Research on Epidemiology of Disasters — CRED, Université Catholique de Louvain, Brussels, Belgium. Accessed 25 Jan 2011
  14. Creighton R, Irish Landslides Working Group (2006) Landslides in Ireland. Geological Survey of Ireland, Dublin, IrelandGoogle Scholar
  15. Decaulne A (2005) Slope processes and related risk appearance within the Icelandic Westfjords during the twentieth century. Nat Hazards Earth Sys Sci 5:309–318CrossRefGoogle Scholar
  16. Dikau R, Glade T (2003) Nationale Gefahrenhinweiskarte gravitativer Massenbewegungen. In: Liedtke H, Mäusbacher R, Schmidt KH (eds) Relief, boden und wasser. Nationalatlas Bundesrepublik Deutschland, Institut für Länderkunde, Leipzig, Germany, pp 98–99Google Scholar
  17. Dykes AP, Kirk KJ (2001) Initiation of a multiple peat slide on Cuilcagh Mountain, Northern Ireland. Earth Surf Process Landforms 26:395–408. doi:10.1002/esp. 188 CrossRefGoogle Scholar
  18. EEA (2010) Mapping the impacts of natural hazards and technological accidents in Europe — an overview of the last decade. EEA technical report 13/2010. European Environment Agency, Copenhagen, Denmark. doi:10.2800/62638 Google Scholar
  19. ESA (2008) GLobCover 2004–2006. European Space Agency, Paris, FranceGoogle Scholar
  20. FAO, EC, ISRIC (2003) WRB Map of World Soil Resources, 1:25 000 000. FAO, Rome, ItalyGoogle Scholar
  21. Fell R, Corominas J, Bonnard C, Cascini L, Leroi E, Savage WZ (2008) Guidelines for landslide susceptibility, hazard and risk zoning for land use planning. Eng Geol 102:85–98. doi:10.1016/j.enggeo.2008.03.022 CrossRefGoogle Scholar
  22. Foster C, Gibson A, Wildman G (2008) The new national landslide database and landslide hazard assessment of Great Britain. Proceedings of the First World Landslide Forum, Tokyo, 18–21 November 2008, pp 203–206Google Scholar
  23. Giardini D, Grünthal G, Shedlock K, Zhang P (2003) The GSHAP Global Seismic Hazard Map. In: Lee W, Kanamori H, Jennings P (eds) International handbook of earthquake and engineering seismology, International geophysics series 81 B. Academic, Amsterdam, USA, pp 1233–1239CrossRefGoogle Scholar
  24. GSC (2011) Landslides — recent events worldwide. Geological Survey of Canada. Accessed 25 Jan 2011
  25. Günther A, Reichenbach P, Hervás J (2008) Approaches for delineating areas susceptible to landslides in the framework of the European Soil Thematic Strategy. Proceedings of the First World Landslide Forum, Tokyo, 18–21 November 2008, pp 235–238Google Scholar
  26. Guzzetti F, Tonelli G (2004) SICI: an information system on historical landslides and floods in Italy. Nat Hazards Earth Syst Sci 4:213–232CrossRefGoogle Scholar
  27. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216. doi:10.1016/S0169-555X(99)00078-1 CrossRefGoogle Scholar
  28. Guzzetti F, Reichenbach P, Ardizzone F, Cardinali M, Galli M (2006) Estimating the quality of landslide susceptibility models. Geomorphology 81:166–184. doi:10.1016/j.geomorph.2006.04.007 CrossRefGoogle Scholar
  29. Hansen A (1984) Landslide hazard analysis. In: Brunsden D, Prior DB (eds) Slope instability. Wiley, New York, USA, pp 523–602Google Scholar
  30. Hervás J (2007) Guidelines for mapping areas at risk of landslides in Europe. Proceedings experts meeting, 23–24 October 2007, Ispra, Italy. JRC report EUR 23093 EN, Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  31. Hervás J, Bobrowsky P (2009) Mapping: inventories, susceptibility, hazard and risk. In: Sassa K, Canuti P (eds) Landslides — disaster risk reduction. Springer, Berlin, Germany, pp 321–349CrossRefGoogle Scholar
  32. Hervás J, Günther A, Reichenbach P, Malet JP, Van Den Eeckhaut M (2010) Harmonised approaches for landslide susceptibility mapping in Europe. In: Malet JP, Glade T, Casagli N (eds) Proc. int. conference mountain risks: bringing science to society, Florence, Italy, 24–26 November 2010. CERG Editions, Strasbourg, France, pp 501–505Google Scholar
  33. Hong Y, Adler R, Huffman G (2007) Use of satellite remote sensing data in the mapping of global landslide susceptibility. Nat Hazards 43:245–256. doi:10.1007/s11069-006-9104-z CrossRefGoogle Scholar
  34. Hosmer DW, Lemeshow S (2000) Applied logistic regression. Wiley, New York, USACrossRefGoogle Scholar
  35. Hradecký J, Pánek T, Klimová R (2007) Landslide complex in the northern part of the Silesian Beskydy Mountains (Czech Republic). Landslides 4:53–62. doi:10.1007/s10346-006-0052-1 CrossRefGoogle Scholar
  36. ICL (2011) International Consortium of Landslides. Accessed 25 Jan 2011
  37. Ilcewicz-Stefaniuk D, Rybicki S, Slomka T, Stefaniuk M (2008) Surface mass movements in Poland — a review. Pol Geol Inst Spec Pap 24:83–92Google Scholar
  38. ISDR (2009) Global assessment report on disaster risk reduction. United Nations, Geneva, SwitzerlandGoogle Scholar
  39. Instituto Tecnologico GeoMinero de Espana (1988) Catalogo Nacional de Riesgos Geologicos. ITGE, Madrid, SpainGoogle Scholar
  40. Jaedicke C, Lied K, Kronholm K (2009) Integrated database for rapid mass movements in Norway. Nat Hazards Earth Syst Sci 9:469–479CrossRefGoogle Scholar
  41. Jaedicke C, Van Den Eeckhaut M, Nadim F, Hervás J, Kalsnes B, Smith T, Tofani V, Ciurean R, Winter M. (2011) Identification of landslide hazard and risk “hotspots” in Europe. Geophys Res Abstr 13, EGU2011-10398Google Scholar
  42. Jelínek R, Maitan S, Omura H (2001) Slope movements in Slovakia — geographic and geological characteristics. J Fac Agric Kyushu Univ 45:589–600Google Scholar
  43. King G, Zeng L (2001) Logistic regression in rare events data. Polit Anal 9:137–163CrossRefGoogle Scholar
  44. Kirschbaum DB, Adler R, Hong Y, Lerner-Lam A (2009) Evaluation of a preliminary satellite-based landslide hazard algorithm using global landslide inventories. Nat Hazards Earth Syst Sci 9:673–686CrossRefGoogle Scholar
  45. Kleinbaum DG, Klein M (2002) Logistic regression, a self-learning text, 2nd edn. Springer, New York, USAGoogle Scholar
  46. Laguardia G, Niemeyer S (2008) On the comparison between the LISFLOOD modelled and the ERS/SCAT derived soil moisture estimates. Hydrol Earth Syst Sci Discuss 5:1227–1265CrossRefGoogle Scholar
  47. Lee S, Sambath T (2006) Landslide susceptibility mapping in the Damrei Romel area, Cambodia using frequency ratio and logistic regression models. Environ Geol 50:847–855. doi:10.1007/s00254-006-0256-7 Google Scholar
  48. Malet JP, Thiery Y, Hervás J, Günther A, Puissant A, Grandjean G (2009) Landslide susceptibility mapping at 1:1 M scale over France: exploratory results with a heuristic model. Proc. Int. conference on landslide processes: from geomorphologic mapping to dynamic modelling, A tribute to Prof. Dr. Theo van Asch, 6 –7 February 2009, Strasbourg, France, pp. 315–320Google Scholar
  49. Markart G, Perzl F, Hohl B, Luzian R, Kleemayr K, Ess B, Mayerl J (2007) 22nd and 23rd August 2005 — analysis of flooding events and mass movements in selected communities of Vorarlberg. BFW-Dokumentation, Schriftenreihe des Bundesforschungs- and Ausbildungszentrums für Wald, Naturgefahren und Landschaft, Wien, AustriaGoogle Scholar
  50. Munich Re (2011) Munich Re NatCatSERVICE. Accessed 25 Jan 2011
  51. Nadim F, Kjekstad O, Peduzzi P, Herold C, Jaedicke C (2006) Global landslide and avalanche hotspots. Landslides 3:159–173. doi:10.1007/s10346-006-0036-1 CrossRefGoogle Scholar
  52. Nadim F, Asbjørn S, Pedersen S, Schmidt-Thomé P, Sigmundsson F, Engdahl M (2008) Natural hazards in Nordic countries. Episodes 31:176–184Google Scholar
  53. Nordregio (2004) Mountain areas in Europe: analysis of mountain areas in EU member states, acceding and other European countries, report 2004:1. Nordic Centre for Spatial Development, Stockholm, SwedenGoogle Scholar
  54. Petley DN (2011) The landslide blog. Accessed 12 Oct 2011
  55. Rossi M, Guzzetti F, Reichenbach P, Mondini A, Peruccacci S (2009) Optimal landslide susceptibility zonation based on multiple forecasts. Geomorphology 114:129–142. doi:10.1016/j.geomorph.2009.06.020 CrossRefGoogle Scholar
  56. Rudolf B, Beck C, Grieser J, Schneider U (2005) Global precipitation analysis products. Deutscher Wetterdienst, Offenbach a. M., GermanyGoogle Scholar
  57. Salvati P, Bianchi C, Rossi M, Guzzetti F (2010) Societal landslide and flood risk in Italy. Nat Hazards Earth Syst Sci 10:465–483CrossRefGoogle Scholar
  58. Song RH, Daimaru H, Abe K, Kurosawa U, Matsuura S (2008) Modelling the potential distribution of shallow-seated landslides using the weights of evidence and the logistic regression model: a case study in the Sabae area, Japan. Int J Sediment Res 23:106–118CrossRefGoogle Scholar
  59. Swets JA (1988) Measuring the accuracy of diagnostic systems. Science 240:1285–1293CrossRefGoogle Scholar
  60. Theilen-Willige B (2010) Detection of local site conditions influencing earthquake shaking and secondary effects in Southwest-Haiti using remote sensing and GIS-methods. Nat Hazards Earth Syst Sci 10:1183–1196CrossRefGoogle Scholar
  61. USGS (2011) Landslide events. US Geological Survey. Accessed 25 Jan 2011
  62. Van Den Eeckhaut M, Vanwalleghem T, Poesen J, Govers G, Verstraeten G, Vandekerckhove L (2006) Prediction of landslide susceptibility using rare events logistic regression: a case-study in the Flemish Ardennes, Belgium. Geomorphology 76:392–410. doi:10.1016/j.geomorph.2005.12.003 CrossRefGoogle Scholar
  63. Van Den Eeckhaut M, Reichenbach P, Guzzetti F, Rossi M, Poesen J (2009) Combined landslide inventory and susceptibility assessment based on different mapping units: an example from the Flemish Ardennes, Belgium. Nat Hazards Earth Syst Sci 9:507–521CrossRefGoogle Scholar
  64. Van Den Eeckhaut M, Marre A, Poesen J (2010) Comparison of two landslide susceptibility assessments in the Champagne-Ardenne region (France). Geomorphology 115:141–155. doi:10.1016/j.geomorph.2009.09.042 CrossRefGoogle Scholar
  65. Van Den Eeckhaut M, Poesen J, Gullentops F, Vandekerckhove L, Hervás J (2011) Regional mapping and characterisation of old landslides in hilly regions using LiDAR-based imagery in Southern Flanders. Quat Res 130:185–196Google Scholar
  66. Van Den Eeckhaut M, Hervás J (in press) State of the art of national landslide databases in Europe and their potential for hazard and risk assessment. GeomorphologyGoogle Scholar
  67. van Westen CJ, Castellanos E, Kuriakose SL (2009) Spatial data for landslide susceptibility, hazard, and vulnerability assessment: an overview. Eng Geol 102:112–131. doi.10.1016/j.enggeo.2008.03.010 Google Scholar
  68. Vogt JV, Soille P, de Jager AL, Rimaviciute E, Mehl W, Foisneau S, Bódis K, Dusart J, Paracchini ML, Haastrup P, Bamps C (2007) A pan-European river and catchment database. JRC report EUR 22920 EN, Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  69. Warburton J, Holden J, Mills AJ (2004) Hydrological controls of surficial mass movements in peat. Earth Sci Rev 67:139–156. doi:10.1016/j.earscirev.2004.03.003 CrossRefGoogle Scholar
  70. Zêzere JL (2002) Landslide susceptibility assessment considering landslide typology. A case study in the area north of Lisbon (Portugal). Nat Hazards Earth Syst Sci 2:73–82CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Van Den Eeckhaut
    • 1
  • J. Hervás
    • 1
  • C. Jaedicke
    • 2
  • J.-P. Malet
    • 3
  • L. Montanarella
    • 1
  • F. Nadim
    • 2
  1. 1.Institute for Environment and SustainabilityJoint Research Centre (JRC), European CommissionIspraItaly
  2. 2.Norwegian Geotechnical Institute (NGI)International Centre for Geohazards (ICG)OsloNorway
  3. 3.Institut de Physique du Globe de Strasbourg, CNRS UMR 7516Université de Strasbourg / EOSTStrasbourg CedexFrance

Personalised recommendations