, Volume 9, Issue 2, pp 263–273 | Cite as

On the landslide event in 2010 in the Monarch Butterfly Biosphere Reserve, Angangueo, Michoacán, Mexico

  • Irasema Alcántara-Ayala
  • José López-García
  • Ricardo J. Garnica
Recent Landslides


In February 2010, 19 fatalities and economic damage were caused by a regional landslide episode in the state of Michoacán, México. The municipalities of Angangueo, Ocampo, Tiquicheo de Nicolás Romero, Tuxpan, and Tuzantla were severely damaged, with Angangueo being the most affected. The event involved a series of debris flows, of which four were the most significant; these four caused 16 deaths in addition to considerable damage to roads, electricity, and the water supply system, with indirect consequences in crop production, cattle farming, and tourism. The area affected by these four flows was calculated as 282 km2, with an estimated 697,346 m3 of mobilized material. General observations indicated that the initiation sources of the debris flows were on deforested zones. The present research is concentrated on the Angangueo basin, an area situated within the Monarch Butterfly Biosphere Reserve. Given the lack of rain gauges in the area of interest, records from neighboring points were used to build a comprehensive overview of the extreme precipitation event that triggered the devastating debris flows. The nearest rain gauge, Laguna del Fresno, situated 21 km to the south, recorded 204 mm of rainfall from 1 to 5 February, equivalent to 30% of the mean annual rainfall. Moreover, during a 24-h period the El Bosque rain gauge recorded 144.5 mm of precipitation, the equivalent of 2,270% of the mean rainfall for the same month (6.36 mm). The occurrence of a hailstorm preceding the rainfall event is notable; conditions in the superficial soil layer would have included an increased pore water pressure. Presumably, before the 2,000-year return period extreme rainfall event, thawing of hail and consequent moisture and/or pore-pressure increase result in decreased frictional strength. This paper presents a spatial analysis of the distribution of these landslides, mainly debris flows, as well as general observations on the triggering mechanism, the strength properties of the materials involved, and the societal impact.


Landsliding Debris flows Rainfall Angangueo Monarch Butterfly Biosphere Reserve 



The authors thank the support kindly provided by UNAM through the research projects IN307410 and IN303010 and are grateful to Hazziel Padilla Doval, Roberto C. Borja-Baeza, and Laura Diana López-Ascencio for their collaboration in the field campaign and the preparation of some figures, respectively. Thanks are also due to the anonymous reviewers, as their suggestions improved the original manuscript.


  1. Aguilar-Garduño E, Santillán-Hernández OD, Salgado-Maldonado G, Martínez-Morales, M (2010) Análisis técnico de la vulnerabilidad hidrológica ante el crecimiento urbano, caso de Angangueo, Michoacán, XXI Congreso Nacional de Hidráulica, AMH, Guadalajara, Jalisco, México, Octubre,
  2. Alcántara-Ayala I (2004) Hazard assessment of rainfall-induced landsliding in Mexico. Geomorphology 61:19–40CrossRefGoogle Scholar
  3. Alcántara-Ayala I (2008) On the historical account of disastrous landslides in Mexico: the challenge of risk management and disaster prevention. Advances in Geociences-ADGEO 14:159–165CrossRefGoogle Scholar
  4. Alcántara-Ayala I (2010) Disasters in Mexico and Central America: a little bit more than a century of natural hazards. In: Latrubesse E (ed) Natural hazards and human exacerbated disasters in Latin America. Elsevier, The Netherlands, pp 75–98Google Scholar
  5. Alcántara-Ayala I, Esteban-Chávez O, Parrot JF (2006) Landsliding related to land-cover change: a diachronic analysis of hillslope instability distribution in the Sierra Norte, Puebla, Mexico. Catena 65(2):152–165CrossRefGoogle Scholar
  6. Borja-Baeza RC, Esteban-Chávez O, Marcos-López J, Garnica RJ, Alcántara-Ayala I (2006) Slope instability on pyroclastic deposits: landslide distribution and risk mapping in Zacapoaxtla, Sierra Norte de Puebla, Mexico. J Mt Sci 3(1):1–19CrossRefGoogle Scholar
  7. Demant A (1978) Características del eje neovolcánico transmexicano y sus problemas de interpretación. UNAM Inst Geol Rev 2:172–187Google Scholar
  8. INEGI (2010) Censo de Población y Vivienda, 2010,
  9. IPCC (2007) Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri RK, Reisinger A (eds)] IPCC, Geneva, Switzerland, 104 ppGoogle Scholar
  10. Jiménez-Espinosa M, García-Arroliga NM, Martínez-Bringas A, López-Bátiz OA, Matías-Ramírez LG (2010) Visita técnica al municipio de Angangueo, Michoacán, del 15 al 16 de febrero de 2010, con motivo de las lluvias extraordinarias, flujos de escombro y deslizamientos. CENAPRED, 30 pp.
  11. Ramírez-Ramírez MI (2001) Los espacios forestales de la Sierra de Angangueo (estados de Michoacán y México), México: una revisión geográfica. Universidad Complutense de Madrid, Tesis de DoctoradoGoogle Scholar
  12. SGM (2000) Carta Geológica Minera Angangueo (Geological-Mining map of Angangueo) E14 A26, 1ª edición, Servicio Geológico Méxicano, Universidad Michoacana de San Nicolás de Hidalgo, 1: 50,000Google Scholar
  13. Silva L (1979) Contribution à la connaisance de l´axe volcanique transmexicain: étude de géologique et petrologique des Laves du Michoacán Oriental. Thèse Dr. Ing., Université d´Aix en Marseille, France, 230ppGoogle Scholar
  14. SMN (2010) Boletines generales de meteorología durante la semana del 1 al 5 de febrero de 2010, Servicio Meteorológico NacionalGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Irasema Alcántara-Ayala
    • 1
  • José López-García
    • 1
  • Ricardo J. Garnica
    • 1
  1. 1.Instituto de GeografíaUniversidad Nacional Autónoma de MéxicoCoyoacánMexico

Personalised recommendations