Landslides

, Volume 8, Issue 2, pp 241–252 | Cite as

Temporal evolution of weathered cataclastic material in gravitational faults of the La Clapiere deep-seated landslide by mechanical approach

  • Thomas Lebourg
  • Hernandez Mickael
  • Jomard Hervé
  • El Bedoui Bedoui Samyr
  • Bois Thomas
  • Zerathe Swann
  • Tric Emmanuel
  • Vidal MaurinJr
Original Paper

Abstract

After a few years of research, the observation and the analysis of the deep-seated landslides suggest that these are mainly controlled by tectonic structures, which play a dominant role in the deformation of massif slopes. The La Clapière deep-seated landslide (Argentera Mercantour massif) is embedded in a deep-seated gravitational slope deformation affecting the entire slope, and characterized by specific landforms (trenches, scarps…). Onsite, the tangential displacement direction of the trenches and the scarps are controlled by the tectonic structures. The reactivation of the inherited fault in gravitational faults create a gouge material exposed to an additional mechanical and chemical weathering as well as an increased of leaching. The displacement of these reactivated faults gets increasingly important around the area of the La Clapière landslide and this since 3.6 ka BP. In this study, mechanical analysis and grain size distributions were performed and these data were analysed according to their proximity the La Clapiere landslide and times of initiation of the landslide by 10Be dating. Triaxial test results show that the effective cohesion decreases and the effective angle of internal friction increases from the unweathered area to the weathered area. The whole distribution of the grain size indicates that the further the shear zone is open or developed, the further the residual material loses its finest particles. This paper suggests that the mechanical evolution along the reactivated fault is influenced by the leaching processes. For the first time, we can extract from these data temporal behaviour of the two main mechanical parameters (cohesion and angle of internal friction) from the beginning of the La Clapiere landslide initiation (3.6 ka BP) to now.

Keywords

Weathering Gravitational fault La Clapière landslide Temporal evolution 

References

  1. Agliardi F, Crosta GB, Zanchi A (2001) Structural constraints on deep-seated slope deformation kinematics. Eng Geol 59:83–102CrossRefGoogle Scholar
  2. Arel E, Tugrul A (2001) Weathering and its relation to geomechanical properties of Cavusbasi granitic rocks in northwestern Turkey. Bull Eng Geol Environ 60:123–133CrossRefGoogle Scholar
  3. Bogdanoff S (1986) Evolution de la partie occidentale du massif cristallin externe de l’Argentera. Place dans l’arc alpin. Géologie de la France 4:433–453Google Scholar
  4. Bigot-Cormier F, Braucher R, Bourlès D, Guglielmi Y, Dubar M, Stéphan JF (2005) Chronological constraints on processes leading to large active landslides. Earth Planet Sci Lett 235:141–150CrossRefGoogle Scholar
  5. Binet S (2006) L’hydrochimie, marqueur de l’évolution a long terme des versants montagneux fractures vers de grands mouvements de terrain. PhD Thesis 190Google Scholar
  6. Borrelli L, Greco R, Gullà G (2007) Weathering grade of rock masses as a predisposing factor to slope instabilities: reconnaissance and control procedures. Geomorpholy 87:158–175CrossRefGoogle Scholar
  7. Cappa F, Guglielmi Y, Soukatchoff VM, Mudry J, Bertrand C, Charmoille A (2004) Hydromechanical modeling of a large moving rock slope inferred from slope levelling coupled to spring long-term hydrochemical monitoring: example of the La Clapiere landslide (Southern Alps, France). J Hydrol 291:67–90CrossRefGoogle Scholar
  8. Cascini L, Critelli S, Di Nocera S, Gullà G, Matano F (1992) Weathering grades and landslides in the gneisses of Sila Massif: the case of S. Pietro in Guarano (Cosenza) (in Italian). Geol Appl Idrogeol 27:49–76Google Scholar
  9. Casson B, Delacourt C, Baratoux D, Allemand (2003) Seventeen years of the “la Clapiere” landslide evolution analysed from ortho-rectified aerial photographs. Eng Geol 68:123–139CrossRefGoogle Scholar
  10. Chan Tien CE (1998) Simulation numérique du comportement d’un film granulaire cisaillé en fonction de la rugosité des parois et de la forme des granules. PhD Thesis Lyon 202Google Scholar
  11. Costet J, Sanglerat G (1981) Cours pratique de mécanique des sols. Dunod, p 630Google Scholar
  12. Critelli S, Di Nocera S, Le Pera E (1991) Approccio metodologico per la valutazione petrografica del grado di alterazione degli gneiss del Massiccio Silano _Calabria setten-trionale. Geol Appl Idrogeol 26:41–70Google Scholar
  13. Dagnelie P (1998) Statistique, theorique et appliquees. Statistique descriptive et bases de l’inference statistique. De Boeck, Universite, Paris, Bruxelles, pp 1–499Google Scholar
  14. De Jaeger (1991) Influence de la morphologie des sables sur leur comportement mécanique. Univ. Catho. De Louvain, PhD Thesis 3 partsGoogle Scholar
  15. Durville JL, Lacube J (1992) Mécanisme et modèles de comportement de grands mouvements. Bull Inter Ass Eng Geol 45:25–42Google Scholar
  16. El Bedoui S, Guglielmi Y, Lebourg T, Perez JL (2009) Deep-seated failure in fractured rock over 10.000 years; the La Clapiere slope, the south-eastern Alps. Geomorphology 105:232–238CrossRefGoogle Scholar
  17. Follaci JP, Guardia P, Ivaldi JP (1988) Geodynamic framework of “La Clapière” landslide (Maritime Alps, France) (In French). Proc 5th International Symposium on Landslides, Lausanne 2 Publ Rotterdam: A A Balkema 1323–1327Google Scholar
  18. Folk RL, Ward WC (1957) Brazos river bar, a study in the signifiance of grain size parameters. J Sedim Petrol 27:3–27Google Scholar
  19. Frederick MR (1960) An investigation of the effects of particle shape on the shearing resistance of sand. M.C. Project Report, Found. Eng., University BirminghamGoogle Scholar
  20. Frossard E (1979) Effect of sand grain shape on interparticle friction; indirect measurement by Rowe’s stress dilatancy theory. Geotechnique 29:341–350CrossRefGoogle Scholar
  21. Fukumoto T (1992) Particle breakage characteristics of granular soils. Soils Found 32(1):26–40Google Scholar
  22. Gerber E, Scheidegger AE (1969) Stress-induced weathering of rock masses. Eclogae Geol Helv 62:401–415Google Scholar
  23. Guglielmi Y, Vengeon J, Bertrand C, Mudry J, Follaci J, Giraud A (2002) Hydrogeochemistry: an investigation tool to evaluate infiltration into large moving rock masses (case study of La Clapière and Séchilienne alpine landslides). Bull Eng Geol Environ 21(4):311–324CrossRefGoogle Scholar
  24. Guglielmi Y, Cappa F, Binet S (2005) Coupling between hydrogeology and deformation of mountainous rock slopes: insights from La Clapière area (southern Alps, France). Comptes Rendus Geosciences 337:1154–1163CrossRefGoogle Scholar
  25. Gunzburger Y, Laumonier B (2002) A tectonic origin for the fold underlying the Clapiere landslide (NW Argentera-Mercantour massif, Southern Alps, France) deduced from an analysis of fractures. Comptes Rendus Geosciences 334:415–422CrossRefGoogle Scholar
  26. Hardin B (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192CrossRefGoogle Scholar
  27. Howat MD (1985) Completely weathered granite—soil or rock? Q J Eng Geol 18:199–206CrossRefGoogle Scholar
  28. Ivaldi JP, Guardia P, Follaci JP, Terramorsi S (1991) Plis de couverture en échelon et failles de second ordre associes à un décrochement dextre de socle sur le bord nord-ouest de l'Argentera (Alpes-Maritimes, France), C. R. Acad Sci Paris 313:361–368Google Scholar
  29. Jaboyedoff M, Baillifard F, Bardou E, Girod F (2004) The effect of weathering on Alpine rock instability. Q J Eng Geol Hydrogeol 37(2):95–103CrossRefGoogle Scholar
  30. Jahn A (1964) Slopes morphological feature resulting from gravitation. Z Geomorph Suppl 5:59–72Google Scholar
  31. Jomard H (2006) Analyse multi échelles des déformations gravitaires du massif de l'argentera mercantour (In french). PhD Thesis 246Google Scholar
  32. Jomard H, Lebourg T, Tric E (2006) Identification of the gravitational boundary in weathered gneiss by geophysical survey: La Clapière landslide (France). J Appl Geophys 62:47–57CrossRefGoogle Scholar
  33. Jomard H, Lebourg T, Guglielmi Y, Tric E (2010) Electrical imaging of sliding geometry and fluids associated with deep seated landslide (La Clapiere, France). Earth Surf Process Land 35(5):588–599Google Scholar
  34. Julian M, Anthony E (1996) Aspects of landslide activity in the Mercantour Massif and the French Riviera, south-eastern France. Geomorphology 15:275–289CrossRefGoogle Scholar
  35. Kim S, Park H (2003) The relationship between physical and chemical weathering indices of granites around Seoul, Korea. Bull Eng Geol Environ 62:207–212CrossRefGoogle Scholar
  36. Lebourg T (2000) Analyse géologique et mécanique de glissement de terrain dans des moraines des Pyrénées centrales et occidentales (France) (In French). PhD Thesis. Bordeaux I 369Google Scholar
  37. Lebourg T, Riss J, Fabre R, Clement B (2003) Morphological characteristics of till formations in relation with mechanical parameters. Math Geol 35(7):835–852CrossRefGoogle Scholar
  38. Lebourg T, Riss J, Pirard E (2004) Influence of morphological characteristics of heterogeneous moraine formations on their mechanical behaviour using image and statistical analysis. Eng Geol 73:37–50CrossRefGoogle Scholar
  39. Le Pera E, Critelli S, Sorriso-Valvo M (2001) Weathering of gneiss in Calabria, Southern Italy. Catena 42:1–15CrossRefGoogle Scholar
  40. Lumb P (1962) The proprieties of decomposed granite. Geotechnique 12:226–243CrossRefGoogle Scholar
  41. McCalpin JP (1999) Criteria for determining the seismic significance of Sackungen and other scarplike landforms in mountainous regions. In Techniques for identifying faults and determining their origins, U.S. Nuclear Regulatory commission, NUREG/CR-5503 Appendix A, 122–142Google Scholar
  42. McDowell GR, Bolton MD (1998) On the micromechanics of crushable aggregates. Geotechnique 48(5):667–679CrossRefGoogle Scholar
  43. Merrien-Soukatchoff V, Quenot X, Guglielmi Y (2001) Modélisation par éléments distincts du phénomène de fauchage gravitaire. Application au glissement de la Clapière (Saint-Etienne de Tinée, Alpes Maritimes). Rev Fr Géotech 95–96:133–141Google Scholar
  44. Morris HC (1959) The effect of particle shape and texture on the strenght of a noncohesive aggregate. Thesis Washington UniversityGoogle Scholar
  45. Normes Francaises NF P 94-056 and NF P 94-040 (1994)Google Scholar
  46. Onodera TF, Yashinaka R, Oda M (1974) Weathering and its relation to mechanical properties of granite. In: Proc 3rd Int Congr Intyernational Society of Rock Mechanics, Denver 71–78Google Scholar
  47. Persaud M, Pfiffner OA (2004) Active deformation in the eastern Swiss Alps: post-glacial faults, seismicity and surface uplift. Tectonophysics 385:59–84CrossRefGoogle Scholar
  48. Selby MJ (1993) Hillslope material and processes. Edition Oxford. Second edition 445Google Scholar
  49. Storti F, Billi A, Salvini F (2003) Particle size distribution in natural carbonate fault rocks: insights for non-self-similar cataclasis. Earth Planet Sci Lett 206:173–186CrossRefGoogle Scholar
  50. Terzaghi K (1967) Soil mechanics in engineering practise. Wiley, New York, 729Google Scholar
  51. Tric E, Lebourg T, Jomard H, Lecossec J (2010) Study of large-scale deformation induced by gravity on the La Clapière landslide (Saint-Etienne de Tinée, France) using numerical and geophysical approaches. J Appl Geophys 70:210–215CrossRefGoogle Scholar
  52. Zelasko JS (1966) An investigation of the influences of particles size, size gradation and particle shape on the shear strength and packing behaviour of quarziferous sand. Ph D. Thesis, North-western University, EvanstonGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Thomas Lebourg
    • 1
  • Hernandez Mickael
    • 1
  • Jomard Hervé
    • 2
  • El Bedoui Bedoui Samyr
    • 3
  • Bois Thomas
    • 1
  • Zerathe Swann
    • 1
  • Tric Emmanuel
    • 1
  • Vidal MaurinJr
    • 1
  1. 1.UMR 6526, Géoazur, CNRS-UNSA-IRD-UPMCValbonneFrance
  2. 2.Institut of Radioprotection and Nuclear Safety (IRNS)Fontenay-aux-RosesFrance
  3. 3.LRPC NancyTomblaineFrance

Personalised recommendations