, Volume 7, Issue 4, pp 493–501 | Cite as

Rock falls in the Mont Blanc Massif in 2007 and 2008

  • Ludovic RavanelEmail author
  • Françoise Allignol
  • Philip Deline
  • Stephan Gruber
  • Mario Ravello
Recent Landslides


Due to a lack of systematic observations, the intensity and volume of rock falls and rock avalanches in high mountain areas are still poorly known. Nevertheless, these phenomena could have burly consequences. To document present rock falls, a network of observers (guides, mountaineers, and hut wardens) was initiated in the Mont Blanc Massif in 2005 and became fully operational in 2007. This article presents data on the 66 rock falls (100 m3 ≤ V ≤ 50,000 m3) documented in 2007 (n = 41) and 2008 (n = 25). Most of the starting zones are located in warm permafrost areas, which are most sensitive to warming, and only four rock falls are clearly out of permafrost area. Different elements support permafrost degradation as one of the main triggering factors of present rock falls in high mountain areas.


Rock falls Permafrost High alpine environments Mountains Mont Blanc Massif 


  1. Bommer C, Keusen HR, Phillips M (2008) Engineering solutions for foundations and anchors in mountain permafrost. In: Kane DL, Hinkel KM (eds) Proceedings of the 9th International Conference on Permafrost 2008, Institute of Northern Engineering, University of Alaska Fairbanks, pp 159–163Google Scholar
  2. Casty C, Wanner H, Luterbacher J, Esper J, Böhm R (2005) Temperature and precipitation variability in the European Alps since 1500. Int J Climatol 25:1855–1880CrossRefGoogle Scholar
  3. Davies MCR, Hamza O, Harris C (2001) The effect of rise in mean annual temperature on the stability of rock slopes containing ice-filled discontinuities. Permafr Periglac Process 12(1):137–144CrossRefGoogle Scholar
  4. Deline P (2001) Recent Brenva rock avalanches (Valley of Aosta): new chapter in an old story? Supplementi di Geografia Fisica e Dinamica Quaternaria 5:55–63Google Scholar
  5. Deline P, Jaillet S, Rabatel A, Ravanel L (2008a) Ground-based LiDAR data on permafrost-related rock fall activity in the Mont-Blanc massif. In: Kane DL, Hinkel KM (eds) Proceedings of the 9th International Conference on Permafrost 2008, Institute of Northern Engineering, University of Alaska, Fairbanks, pp 349–354Google Scholar
  6. Deline P, Kirkbride MP, Ravanel L, Ravello M (2008b) The Tré-la-Tête rock fall into the glacier de la Lex Blanche (Mont Blanc massif, Italy). Geogr Fis Din Quat 31(2):251–254Google Scholar
  7. Evans SG, Gardner JS (1989) Risques de catastrophes naturelles dans la Cordillière canadienne. In: Fulton RJ (eds) Le Quaternaire du Canada et du Groenland (Commission Géologique du Canada), 1, 756–767Google Scholar
  8. Gruber S, Haeberli W (2007) Permafrost in steep bedrock slopes and its temperature-related destabilization following climate change. J Geophys Res 112:F02S18. doi: 10.1029/2006JF000547 CrossRefGoogle Scholar
  9. Gruber S, Hoelzle M, Haeberli W (2004a) Permafrost thaw and destabilization of Alpine rock walls in the hot summer of 2003. Geophys Res Lett 31:L13504CrossRefGoogle Scholar
  10. Gruber S, Hoelze M, Haeberli W (2004b) Rock wall temperatures in the Alps: modelling their topographic distribution and regional differences. Permafr Periglac Process 15(3):299–307CrossRefGoogle Scholar
  11. Haeberli W, Wegmann M, von der Mühll D (1997) Slope stability problems related to glacier shrinkage and permafrost degradation in the Alps. Eclogae Geol Helv 90:407–414Google Scholar
  12. Huggel C, Zgraggen-Oswald S, Haeberli W, Kääb A, Polkvoj A, Galushkin I, Evans SG (2005) The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat Hazards Earth Syst Sci 5:173–187CrossRefGoogle Scholar
  13. Leloup PH, Arnaud N, Sobel ER, Lacassin R (2005) Alpine thermal and structural evolution of the highest external crystalline massif: the Mont Blanc. Tectonics 24:TC4002. doi: 10.1029/2004TC001676 CrossRefGoogle Scholar
  14. Noetzli J, Hoelzle M, Haeberli W (2003) Mountain permafrost and recent Alpine rock-fall events: a GIS-based approach to determine critical factors. In: Philipps M et al (eds) Proceedings of the 8th International Conference on Permafrost, Zürich, Switzerland, pp 827–832Google Scholar
  15. Noetzli J, Gruber S, Kohl T, Salzmann N, Haeberli W (2007) Three-dimensional distribution and evolution of permafrost temperatures in idealized high-mountain topography. J Geophys Res 112:F02S13. doi: 10.1029/2006JF000545 CrossRefGoogle Scholar
  16. Ravanel L, Deline P (2008) La face ouest des Drus (massif du Mont-Blanc): évolution de l’instabilité d’une paroi rocheuse dans la haute montagne alpine depuis la fin du petit âge glaciaire. Géomorphologie 4:261–272Google Scholar
  17. Rolland Y, Cox S, Boullier AM, Pennacchioni G, Mancktelow N (2003) Rare earth and trace element mobility in mid-crustal shear zones: insights from the Mont Blanc Massif (Western Alps). Earth Planet Sci Lett 214:203–219CrossRefGoogle Scholar
  18. Sosio R, Crosta GB, Hungr O (2008) Complete dynamic modeling calibration for the Thurwieser rock avalanche (Italian Central Alps). Eng Geol 100:11–26CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Ludovic Ravanel
    • 1
    Email author
  • Françoise Allignol
    • 1
  • Philip Deline
    • 1
  • Stephan Gruber
    • 2
  • Mario Ravello
    • 3
  1. 1.Laboratoire EDYTEMUniversité de Savoie, CNRSLe Bourget-du-LacFrance
  2. 2.Glaciology, Geomorphodynamics and GeochronologyUniversity of ZurichZurichSwitzerland
  3. 3.La SalleItaly

Personalised recommendations