Advertisement

Landslides

, Volume 7, Issue 2, pp 117–124 | Cite as

Computational fluid dynamics modelling of landslide generated water waves

  • Chiara BiscariniEmail author
Original Paper

Abstract

This paper describes the application of detailed computational fluid dynamics (CFD) to simulate the formation and propagation of waves generated by the impact of landslide material with water. The problem is schematised as a multiphase–multicomponent fluid flow: compressible air, water and transported alluvial material. The landslide simulation is performed by means of a hybrid approach: as a rigid solid body slipping down along an inclined slope until it starts penetrating the water body. The CFD model solves the Navier–Stokes equations with the RNG k-ɛ turbulence closure scheme and the volume of fluid multiphase method, which maintains the interface as a sharp front. The governing equations are solved using the commercial CFD code, FLUENT. The computed results are compared with experimental data reported in the literature. The model is then applied to simulate the 1958 Lituya bay Tsunami event with a 2D a simplified geometry and the results are compared to others found in literature.

Keywords

Impulse waves Landslide Computational fluid dynamics Multiphase flows Tsunami Volume of fluid 

Notes

Acknowledgements

The author is grateful for the productive suggestions and the support of Prof. Gino Bella.

References

  1. Abadie S, Grilli S, Glockner S (2006) A coupled numerical model for tsunami generated by subaerial and submarine mass failures. In Proc. 30th Intl. Coastal Engng. Conf., San Diego, California, USA, 1420–1431Google Scholar
  2. Abbott MB, Basco DR (1989) Computational fluid dynamics: an introduction for engineers Harlow, Essex, England: Longman Scientific & Technical. Wiley, New YorkGoogle Scholar
  3. Ataie-Ashtiani B, Nik-Khah A (2008) Impulsive waves caused by subaerial landslides. Environ Fluid Mech 8(3):263–280CrossRefGoogle Scholar
  4. Biscarini C, Esposito E, Porfido S, Violante C (2005) Hydrogeological risk analysis in coastal area. IHP—UNESCO 2005–2015 United Nations Decade for action—Water For LifeGoogle Scholar
  5. Esposito E, Porfido S, Violante C, Biscarini C (2004a) Il nubifragio dell'ottobre 1954 a Vietri sul mare–Costa di Amalfi, Salerno. Scenario ed effetti di una piena fluviale catastrofica in un’area di costa rocciosa. Pubbl. GNDCI n. 2870, ISBN 88-88885-03-XGoogle Scholar
  6. Esposito E, Porfido S, Violante C, Biscarini C (2004b) Water events and historical flood recurrences in the Vietri sul Mare coastal area (Costiera Amalfitana, southern Italy). Proceedings of the UNESCO/IAHS/IWHA symposium on “The Basis of Civilization—Water Science”? Rome IAHS Publ 286:95–106Google Scholar
  7. Fluent 6.1 User’s guide (Fluent Inc. 2003)Google Scholar
  8. Fritz HM (2002) Initial phase of landslide generated impulse waves. In: Minor H-E (ed) VAW-Mitteilung 178. Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH ZürichGoogle Scholar
  9. Fritz HM, Hager WH, Minor HE (2001) Lituya bay case: rockslide impact and wave run-up. Sci Tsunami Hazards 19(1):3–22Google Scholar
  10. Galperin BA, Orszag SA (1993) Large Eddy simulation of complex engineering and geophysical flows. Cambridge University PressGoogle Scholar
  11. Grilli ST, Watts P (1999) Modeling of waves generated by a moving submerged body: applications to underwater landslides. Eng Anal Bound Elem 23(8):645–656CrossRefGoogle Scholar
  12. Hall JV Jr, Watts GM (1953) Laboratory investigation of the vertical rise of solitary waves on impermeable slopes. Tech. Memo. 33, U.S. Army Corps of Engineers, Beach Erosion BoardGoogle Scholar
  13. Harbitz CB (1992) Model simulations of tsunamis generated by the Storegga slides. Mar Geol 105:1–21CrossRefGoogle Scholar
  14. Hargreaves DM, Morvan H, Wright NG (2007) Validation of the volume of fluid method for free surface calculation: the broad-crested weir. Engineering Applications of Computational Fluid Mechanics 2:136–146Google Scholar
  15. Heinrich P (1992) Nonlinear Water Waves Generated by Submarine and Aerial Landslides. J Waterw Port Coast Ocean Eng. ASCE 118(3):249–266CrossRefGoogle Scholar
  16. Heinrich P, Mangeney A, Guibourg S, Roche R, Boudon G, Cheminée JL (1998) Simulation of water waves generated by a potential debris avalanche in Montserrat, Lesser Antilles. Geophys Res Lett 25:3697–3700CrossRefGoogle Scholar
  17. Hirsch C (1992) Numerical computation of internal and external flows. Wiley, New YorkGoogle Scholar
  18. Imamura F, Gica EC (1996) Numerical model for tsunami generation subaqueous landslide along a coast. Sci Tsunami Hazards 14:13–28Google Scholar
  19. Imteaz MMA, Imamura F (1995) Long waves in two-layers: governing equations and numerical model. Sci Tsunami Hazards 13:3–24Google Scholar
  20. Iwasaki S (1987) On the estimation of a tsunami generated by a submarine landslide. Proc Intl Tsunami Symp, Vancouver, BC, pp 134–38Google Scholar
  21. Jiang L, LeBlond PH (1992) The coupling of a submarine slide and the surface waves which it generates. J Geoph Res 97(C8):12731–12744CrossRefGoogle Scholar
  22. Kamphuis JW, Bowering RJ (1970). Impulse waves generated by landslides. Proc. 12’h Coastal Engineering Con ASCE, pp 1575–588Google Scholar
  23. Lin P, Liu PL-F (1998) A numerical study of breaking waves in the surf zone. J Fluid Mech 359:239–264CrossRefGoogle Scholar
  24. Mader CL (1999) Modeling the 1958 Lituya Bay mega-tsunami. Sci Tsunami Hazards 17(2):57–67Google Scholar
  25. Mader CL, Gittings ML (2002) Modeling the 1958 Lituya Bay mega-tsunami, II. Sci Tsunami Hazards 20:241–250Google Scholar
  26. Miller DJ (1960) Giant waves in Lituya Bay Alaska, USGS Professional Paper 354-C, Shorter Contributions to General GeologyGoogle Scholar
  27. Monaghan JJ, Kos A (1999) Solitary waves on a Cretan beach. J Waterw Port Coast Ocean Eng 125(3):145–154, doi: 10.1061/(ASCE)0733-950X(1999)125:3(145) CrossRefGoogle Scholar
  28. Müller D (1995) Auflaufen und Überschwappen von Impulswellen an Talsperren. VAW-Mitteilung 137, Ed. Vischer D, Versuchsanstalt für Wasserbau, Hydrologie und Glaziologie, ETH Zürich. (in German)Google Scholar
  29. Nakayama T (1983) Boundary element analysis of nonlinear waterwave problems. Intl J Numer Methods Engng 19:953–970CrossRefGoogle Scholar
  30. Noda E (1970) Water waves generated by landslides. ASCE J Waterways, Harbours, and Coastal Engineering Division 96(4):835–855Google Scholar
  31. Panizzo A, De Girolamo P, Di Risio M, Maistri A, Petaccia A (2005) Great landslide events in Italian artificial reservoirs. Nat Hazards Earth Syst Sci 5:733–740CrossRefGoogle Scholar
  32. Pararas-Carayannis G (1999) Analysis of mechanism of tsunami generation in Lituya Bay. Sci Tsunami Hazards 17:193–206Google Scholar
  33. Patankar SV (1980) Numerical heat transfer and fluid flow. Hemisphere, USAGoogle Scholar
  34. Pelinovsky E, Poplavsky A (1996) Simplified model of tsunami generation by submarine landslide. Phys Chem Earth 21(12):13–17CrossRefGoogle Scholar
  35. Rodi W (1984) Turbulence models and their application in hydraulics—a state of the art review. Presented by the IAHR Section on Fundamentals and Division II: Experimental and Mathematical Fluid Dynamics (2nd revised ed)Google Scholar
  36. Synolakis CE (1987) The run-up of solitary waves. J Fluid Mech 185:523–545CrossRefGoogle Scholar
  37. Verriere M, Lenoir M (1992) Computation of waves generated by submarine landslides. Intl J Num Methods Fluids 14:403–421CrossRefGoogle Scholar
  38. Versteeg HK, Malalasekera W (1995) An introduction to computational fluid dynamics: the finite volume method. Addison Wesley Longman, HarlowGoogle Scholar
  39. Vinje T, Brevig P (1981) Numerical simulation of breaking waves. Adv Water Resour 4:77–82CrossRefGoogle Scholar
  40. Walder JS, Watts P, Sorensen OE, Janssen K (2003) Water waves generated by subaerial mass flows. J Geophys Res [Solid Earth] 108(5):2236–2255CrossRefGoogle Scholar
  41. Wieczorek GF, Geist EL, Motyka RJ, Jakob M (2007) Hazard assessment of the tidal inlet landslide and potential subsequent tsunami, Glacier Bay National Park. Alaska Landslides 4:205–215, doi: 10.1007/s10346-007-0084-1 Google Scholar
  42. Yakhot V, Orszag SA (1986) Renormalization group analysis of turbulence: I. Basic Theory. J Sci Comput 1(1):1–51CrossRefGoogle Scholar
  43. Youngs DL (1982) Time-dependent multi-material flow with large fluid distortion. In: Morton KW, Baines MJ (eds) Numerical methods for fluid dynamics. Academic, New YorkGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  1. 1.Warredoc, Water Resources Research And Documentation CentreUniversity For Foreigners PerugiaPerugiaItaly

Personalised recommendations