, Volume 5, Issue 4, pp 445–455 | Cite as

The July 2007 rock and ice avalanches at Mount Steele, St. Elias Mountains, Yukon, Canada

  • Panya S. LipovskyEmail author
  • Stephen G. Evans
  • John J. Clague
  • Chris Hopkinson
  • Réjean Couture
  • Peter Bobrowsky
  • Göran Ekström
  • Michael N. Demuth
  • Keith B. Delaney
  • Nicholas J. Roberts
  • Garry Clarke
  • Andrew Schaeffer
Recent Landslides


A large rock and ice avalanche occurred on the north face of Mount Steele, southwest Yukon Territory, Canada, on July 24, 2007. In the days and weeks preceding the landslide, several smaller avalanches initiated from the same slope. The ice and rock debris traveled a maximum horizontal distance 5.76 km with a maximum vertical descent of 2,160 m, leaving a deposit 3.66 km2 in area on Steele Glacier. The seismic magnitude estimated from long-period surface waves (M s) is 5.2. Modeling of the waveforms suggests an estimated duration of approximately 100 s and an average velocity of between 35 and 65 m/s. This landslide is one of 18 large rock avalanches known to have occurred since 1899 on slopes adjacent to glaciers in western Canada. We describe the setting, reconstruct the event chronology and present a preliminary characterization of the Mount Steele ice and rock avalanches based on field reconnaissance, analysis of seismic records and an airborne LiDAR survey. We also present the results of a successful dynamic simulation for the July 24 event.


Rock avalanche Ice avalanche Mount Steele St. Elias Mountains Yukon Territory 



We gratefully acknowledge contributions to this study made by Steve Israel (Yukon Geological Survey); Peter von Gaza (Pixel Mapper Geoscience); Doug Makkonen (Trans North Helicopters); Lance Goodwin, Andy Williams and Donjek Upton (Icefield Ranges Expeditions); Dr. John Barlow and the Canadian Consortium for LiDAR Environmental Applications Research (C-CLEAR) field crew; Lloyd Freese (Kluane National Park); Christian Zdanowicz (Geological Survey of Canada); Dr. Natalia Ruppert (Alaska Earthquake Information Center, University of Alaska Fairbanks); and Dr. Gerald Holdsworth (Arctic Institute of North America, University of Calgary). Stephen A. Wolfe provided a Geological Survey of Canada internal review. We also acknowledge the helpful reviews of Dr. Patrick Wassmer and an anonymous reviewer. We acknowledge Natural Resources Canada Earth Sciences Sector contribution number 20070457.


  1. Bruhn RL, Pavlis T, Plafker G, Serpa L (2004) Deformation during terrane accretion in the Saint Elias orogen, Alaska. Geol Soc Am Bull 116(7–8):771–787CrossRefGoogle Scholar
  2. Clague JJ (1979) The Denali Fault system in southwest Yukon Territory—a geologic hazard? In: Current Research Part A, Geological Survey of Canada, Paper 79-1A, pp 169–178Google Scholar
  3. Cluff LS (1971) Peru earthquake of May 31, 1970; engineering geology observations. Bull Seismol Soc Am 61:511–533Google Scholar
  4. Dodds CJ, Campbell RB (1992) Geology of Mount St. Elias map area (115B and F[E1/2]), Yukon Territory. Geological Survey of Canada Open File 2189Google Scholar
  5. Eisbacher GH, Clague JJ (1984) Destructive mass movements in high mountains. Geological Survey of Canada Paper 84-16, 228 ppGoogle Scholar
  6. Ekström G (2006) Global detection and location of seismic sources using surface waves. Bull Seismol Soc Am 96(4A):1201–1212CrossRefGoogle Scholar
  7. Ekström G, Hansen RA, Pavlis GL, Lipovsky PL (2007) Seismological detection and analysis of recent landslides in Alaska and the Yukon. In: Eos Trans. AGU, 88(52), Fall Meet. Suppl., Abstract S52B-05Google Scholar
  8. Evans SG, Clague JJ (1988) Catastrophic rock avalanches in glacial environments. In: Bonnard C (ed) Proceedings of the 5th International Symposium on Landslides, Lausanne, 2:1153–1158Google Scholar
  9. Evans SG, Clague JJ (1999) Rock avalanches on glaciers in the Coast and St. Elias Mountains, British Columbia. In: Proceedings of the 13th Annual Vancouver Geotechnical Society Symposium, Vancouver, pp 115–123Google Scholar
  10. Evans SG, Clague JJ, Woodsworth GJ, Hungr O (1989) The Pandemonium Creek rock avalanche, British Columbia. Can Geotech J 26(3):427–446CrossRefGoogle Scholar
  11. Evans SG, Fidel SL, Zegarra LJ (2007) Los Movimientos en Masa de 1962 y 1970 en el Nevado de Huascarán, Valle del rio Santa, Cordillera Blanca, Perú. Anexo B4. In: Movimientos en Masa en la Región Andina: Una guía para la evaluación de amenazas. Proyecto Multinacional Andino:Geociencias para las Comunidades Andinas, Publicacion Geologica Multinacional, No. 4, pp 386–404Google Scholar
  12. Everard KA, Savigny KW (1994) Neotectonic effects of landslide distributions, Yukon, Canada. In: Oliveira R, Rodrigues LF, Coelho AG, Cunha AP (eds) Proceedings, 7th International Congress. International Association of Engineering Geology, Lisbon, pp 1811–1820Google Scholar
  13. Gordey SP, Makepeace AJ (2003) Yukon digital geology, version 2.0. Geol Surv Canada Open File 1749 and Yukon Geological Survey Open File 2003-9(D), 2 CD-ROMSGoogle Scholar
  14. Haeussler PJ, Schwartz DP, Dawson TE, Stenner HD, Lienkaemper JJ, Sherrod B, Cinit FR, Montone P, Craw PA, Crone AJ, Personius SF (2004) Surface rupture and slip distribution of the Denali and Totshunda faults in the 3 November 2002 M7.9 earthquake, Alaska. Bull Seismol Soc Am 94(6B):S23–S52CrossRefGoogle Scholar
  15. Hauser A (2002) Rock avalanche and resulting debris flow in Estero Parraguirre and Rio Colorado, Region Metropolitana, Chile. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: effects, occurrence and mechanisms. Geological Society of America Reviews in Engineering Geology 15:135–148Google Scholar
  16. Hewitt K (2008) Rock avalanches that travel onto glaciers and related developments, Karakoram Himalaya, Inner Asia. Geomorphology (in press)Google Scholar
  17. Horner RB (1983) Seismicity in the St. Elias region of northwestern Canada and southeastern Alaska. Bull Seismol Soc Am 73:1117–1137Google Scholar
  18. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows and avalanches. Can Geotech J 32:610–623CrossRefGoogle Scholar
  19. Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model. In: Proceedings of the 7th International Symposium on Landslides, Trondheim, 17–21 June 1996, pp 233–238Google Scholar
  20. Hungr O, McDougall S (2008) Two numerical models for landslide dynamic analysis. Computers and Geosciences, doi: 10.1016/j.cageo.2007.12.003
  21. Jibson RW, Harp EL, Schulz W, Keefer DK (2006) Large rock avalanches triggered by the M 7.9 Denali Fault, Alaska, earthquake of 3 November 2002. Eng Geol 83:144–160CrossRefGoogle Scholar
  22. Keefer DK, Larsen MC (2007) Assessing landslide hazards. Science 316:1136–1138CrossRefGoogle Scholar
  23. Lowey GW (1998) A new estimate of the amount of displacement on the Denali Fault system based on the occurrence of carbonate megaboulders in the Dezadeash Formation (Jura-Cretaceous), Yukon, and the Nutzotin Mountains sequence (Jura-Cretaceous), Alaska. Bull Can Pet Geol 46(3):379–386Google Scholar
  24. McSaveney MJ (2002) Recent rockfalls and rock avalanches in Mount Cook National Park, New Zealand. In: Evans SG, DeGraff JV (eds) Catastrophic landslides: effects, occurrence and mechanisms. Geological Society of America, Reviews in Engineering Geology, 15:35–70Google Scholar
  25. Molnia BF, Agneli KM, Bratton DA, Keeler RH, Noyles C (2006) Meltwater induced glacier landslides—Waxell Ridge, AK. Eos 87(52), Fall Meeting Supplement, Abstract C31A-1247Google Scholar
  26. Pavlis TL, Picornell C, Serpa L, Bruhn RL, Plafker G (2004) Tectonic processes during oblique collision: insights from the St. Elias orogen, northern North American Cordillera. Tectonics 23(3):1–14CrossRefGoogle Scholar
  27. Petrakov D, Chernomorets SS, Evans SG, Tutubalina OV (2008) Catastrophic multi-phase glacial movement: a special type of glacier hazard. Adv Geosci 14:211–218CrossRefGoogle Scholar
  28. Pflaker G, Ericksen GE (1978) Nevados Huascaran avalanche, Peru. In: Voight B (ed) Rockslides and avalanches, Volume 1: natural phenomena. Elsevier, New York, pp 277–314Google Scholar
  29. Porter SC, Orombelli G (1980) Catastrophic rockfall of September 12, 1717 on the Italian flank of the Mont Blanc massif. Z Geomorphol 24:200–218Google Scholar
  30. Post A (1967) The Alaska earthquake March 27, 1964: effects on hydrologic regimen. U.S. Geological Survey Professional Paper 544-DGoogle Scholar
  31. Smith CAS, Meikle JC, Roots CF (eds) (2004) Ecoregions of the Yukon Territory: biophysical properties of Yukon landscapes. Agriculture and Agri-Food Canada, PARC Technical Bulletin No. 04-01, Summerland, BC, 313 ppGoogle Scholar
  32. Spotila JA, Buscher JT, Meigs AJ, Reiners PW (2004) Long-term glacial erosion of active mountain belts: examples of the Chugach-St Elias Range, Alaska. Geology 32(6):501–504CrossRefGoogle Scholar
  33. Stanley AD (1969) Observations of the surge of Steele Glacier, Yukon Territory, Canada. Can J Earth Sci 6(4):819–830Google Scholar
  34. Stanley AD (1972) Observations of the surge of Steele Glacier. In: Bushnell VC, Ragle RH (eds) Icefield Ranges Research Project scientific results, volume 3. American Geographical Society and Arctic Institute of North America, pp 61–69Google Scholar
  35. Wheeler JO, Brookfield AJ, Gabrielse H, Monger JW, Tipper HW, Woodsworth GJ (compilers) (1991) Terrane map of the Canadian Cordillera, Geological Survey of Canada Map 1713A, scale 1:2 000 000Google Scholar
  36. Wood WA (1972) Steele Glacier, 1935–1968. In: Bushnell VC, Ragle RH (eds) Icefield Ranges Research Project scientific results, volume 3. American Geographical Society and Arctic Institute of North America, pp 1–8Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Panya S. Lipovsky
    • 1
    Email author
  • Stephen G. Evans
    • 2
  • John J. Clague
    • 3
  • Chris Hopkinson
    • 4
  • Réjean Couture
    • 5
  • Peter Bobrowsky
    • 5
  • Göran Ekström
    • 6
  • Michael N. Demuth
    • 7
  • Keith B. Delaney
    • 2
  • Nicholas J. Roberts
    • 2
  • Garry Clarke
    • 8
  • Andrew Schaeffer
    • 8
  1. 1.Yukon Geological SurveyGovernment of YukonWhitehorseCanada
  2. 2.Landslide Research Programme, Department of Earth and Environmental SciencesUniversity of WaterlooWaterlooCanada
  3. 3.Centre for Natural Hazard Research, Department of Earth SciencesSimon Fraser UniversityBurnabyCanada
  4. 4.Applied Geomatics Research Group, Centre of Geographic SciencesNova Scotia Community CollegeLawrencetownCanada
  5. 5.Geological Survey of Canada (Landslides and Geotechnics)Natural Resources CanadaOttawaCanada
  6. 6.Lamont-Doherty Earth ObservatoryColumbia UniversityPalisadesUSA
  7. 7.Geological Survey of Canada (Glaciology)Natural Resources CanadaOttawaCanada
  8. 8.Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada

Personalised recommendations