, 5:227 | Cite as

Characterisation of a Pleistocene debris-avalanche deposit in the Tenteniguada Basin, Gran Canaria Island, Spain

  • Alejandro Lomoschitz
  • Javier Hervás
  • Jorge Yepes
  • Joaquín Meco
Original Article


We studied a large debris-avalanche deposit of Pleistocene age in the Tenteniguada Basin, Gran Canaria Island, Spain. This deposit, which is well preserved because it is mostly covered by basanite lava flows, has distinctive matrix and block facies, hummocky topography and internal structures typical of debris avalanches. However, neither syneruptive lavas nor some characteristic features of volcanic debris-avalanche deposits, such as a stratovolcano edifice or a horseshoe-shaped crater, are present. The occurrence of internal features characteristic of volcanic avalanche deposits could be attributed to the volcanic materials involved in the movement rather than to the triggering of the avalanche during a volcanic eruption. The conditioning factors are shown to be associated with specific structural and hydrological conditions, such as the presence of old volcanic domes, strength reduction of the rocks, effective stress decrease, active gully erosion and water table rise during Pleistocene humid episodes. We finally suggest that the possible triggering factor of the avalanche was a neighbouring volcanic or tectonic earthquake.


Debris avalanche Volcanic island Large landslide Canary Islands Gran Canaria 



This research was initially funded by the European Commission's DG Research under the FP4 Environment and Climate Programme, Natural Risks, RUNOUT project (ENV4-CT97-05527). It has also been sponsored by the Spanish Ministry of Environment and the University of Las Palmas de Gran Canaria (CN-62/03-02139). We thank Dr. Robert I. Tilling of the United States Geological Survey and Dr. Marcel Hürlimann of the Technical University of Catalonia, Spain, for providing helpful suggestions to the manuscript.


  1. Balcells R, Barrera JL, Gómez JA (1990) Mapa Geológico de España a escala 1: 25,000 Gran Canaria, Maps 1109 II (Telde) and 1109 III (San Bartolomé de Tirajana). Instituto Tecnológico y Geominero de España (ITGE), MadridGoogle Scholar
  2. Balcells R, Barrera JL, Gómez JA (1992) Mapa Geológico de España a escala 1: 100,000 Gran Canaria. Instituto Tecnológico y Geominero de España (ITGE), MadridGoogle Scholar
  3. Belousov A, Belousova M, Voight B (1999) Multiple edifice failures, debris avalanches and associated eruptions in the Holocene history of Shiveluch volcano, Kamchatka, Russia. Bull Volcanol 61:324–342CrossRefGoogle Scholar
  4. Capra L, Macias JL, Scout KM, Abrams M, Garduño-Monroy VH (2002) Debris avalanches and debris flows transformed from collapses in the Trans-Mexican Volcanic Belt, Mexico—behavior and implications for hazard assessment. J Volcanol Geotherm Res 113:81–110CrossRefGoogle Scholar
  5. Crandell DR, Miller CD, Glicken HX, Christiansen RL, Newhall CG (1984) Catastrophic debris avalanche from ancestral Shasta volcano, California. Geology 12:143–146CrossRefGoogle Scholar
  6. Cruden DM, Varnes DJ (1996) Landslides types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation. Special Report 247. Transportation Research Board National Research Council, Washington, DC, pp 36–75Google Scholar
  7. Endo K, Sumita M, Machida M, Furuichi M (1989) The 1984 collapse and debris avalanche deposits of Ontake Volcano, Central Japan. In: Latter JH (ed) (1989) IAVCEI Proceedings in Volcanology 1, Volcanic Hazards. Springer-Verlag, Berlin, pp 210–229Google Scholar
  8. Francis PW, Gardeweg M, Ramírez CF, Rotherry DA (1985) Catastrophic debris avalanche deposit of Socompa volcano, northern Chile. Geology 13:600–603CrossRefGoogle Scholar
  9. Funck Th, Schmincke H-U (1998) Growth and destruction of Gran Canaria deduced from seismic reflection and bathymetric data. J Geophys Res 103(B7):15393–15407CrossRefGoogle Scholar
  10. García Cacho L, Díez-Gil JL, Araña V (1994) A large volcanic debris avalanche in the Pliocene Roque Nublo Stratovolcano, Gran Canaria, Canary Islands. J Volcanol Geotherm Res 63:217–229CrossRefGoogle Scholar
  11. Glicken H (1996) Rockslide-Debris Avalanche of May 18, 1980, Mount St. Helens Volcano, USGS Open-File Report 96-677. USGS, Washington, pp 1–90Google Scholar
  12. Glicken H, Nakamura Y (1991) New data on blast and debris avalanche of 1888 eruption of Bandai Volcano, Japan. Programme and abstracts 1991: E12-06. Volcanol Soc Jpn 1:16Google Scholar
  13. González de Vallejo LI, Tsige M, Cabrera L (2005) Paleoliquefaction features on Tenerife (Canary Islands) in Holocene sand deposits. Eng Geol 76(3, 4):179–190CrossRefGoogle Scholar
  14. Guillou H, Pérez FJ, Hansen AR, Carracedo JC, Gimeno D (2004) The Plio-Quaternary volcanic evolution of Gran Canaria based on new K–Ar ages and magnetostratigraphy. J Volcanol Geotherm Res 135:221–246CrossRefGoogle Scholar
  15. Hürlimann M, Ledesma A, Martí J (1999) Conditions favouring catastrophic landslides on Tenerife (Canary Islands). Terra Nova 11:106–111CrossRefGoogle Scholar
  16. Hürlimann M, García-Piera JO, Ledesma A (2000) Causes and mobility of large volcanic landslides: application to Tenerife, Canary Islands. J Volcanol Geotherm Res 103:121–134CrossRefGoogle Scholar
  17. Legros F (2002) The mobility of long-runout landslides. Eng Geol 63:301–331CrossRefGoogle Scholar
  18. Lipman PW (1976) Caldera-collapse breccia in the western San Juan Mountains, Colorado. Geol Soc Amer Bull 87:1397–1410CrossRefGoogle Scholar
  19. Lomoschitz A, Meco J, Corominas J (2002) The Barranco de Tirajana basin, Gran Canaria (Spain). A major erosive landform caused by large landslides. Geomorphology 42:117–130CrossRefGoogle Scholar
  20. Masson DG, Watts AB, Gee MJR, Urgelés R, Mitchell NC, Le Bas TP, Canals M (2002) Slope failures on the flanks of the Western Canary Islands. Earth-Sci Rev 57:1–35CrossRefGoogle Scholar
  21. Meco J, Guillou H, Carracedo JC, Lomoschitz A, García-Ramos AJ, Rodríguez-Yánez JJ (2002) The maximum warmings of the Pleistocene world climate recorded in the Canary Islands. Palaeogeogr, Palaeoclimatol, Palaeoecol 185:197–210CrossRefGoogle Scholar
  22. Meco J, Petit-Maire N, Guillou H, Carracedo JC, Lomoschitz A, Ramos AJ, Ballester J (2003) Climatic changes over the last 5,000,000 years as recorded in the Canary Islands. Episodes 26(2):133–134Google Scholar
  23. Mehl KW, Schmincke H-U (1999) Structure and emplacement of the Pliocene Roque Nublo debris avalanche deposit, Gran Canaria, Spain. J Volcanol Geothermal Res 94:105–134CrossRefGoogle Scholar
  24. Mezcua J, Buforn E, Udías A, Rueda J (1992) Seismotectonics of the Canary Islands. Tectonophysics 208:447–452CrossRefGoogle Scholar
  25. Pérez-Torrado FJ, Carracedo JC, Mangas J (1995) Geochronology and stratigraphy of the Roque Nublo Cycle, Gran Canaria, Canary Islands. J Geol Soc Lond 152:807–818CrossRefGoogle Scholar
  26. Petit JR, Jouzel L, Rainaud D, Barkov NI, Barnola JM, Basile I, Bender M, Cchepellaz J, Davis M, Delaygue G, Delmotte M, Kotlyakov VM, Legrand M, Lipenkov VY, Lorius C, Pepin L, Ritz C, Saltman E, Stievenard M (1999) Climatic and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399:429–436CrossRefGoogle Scholar
  27. Quintana A (2003) Los depósitos de deslizamiento de las cuencas de Tirajana y de Tenteniguada, Gran Canaria, Unpubl. PhD thesis. Universidad de Las Palmas de Gran Canaria, Spain, p 305Google Scholar
  28. Quintana A, Lomoschitz A (2001) Caracterización de los depósitos de debris avalanche de la cuenca de Tenteniguada, Gran Canaria. In: (ed) V Simposio Nacional sobre Taludes y Laderas Inestables. vol. 2. CEDEX, Madrid, pp 603–614Google Scholar
  29. Quintana A, Lomoschitz A (2005) In: Gutiérrez J, Gutiérrez M, Desir G, Guerrero J, Lucha P, Marín C, García-Ruiz JM (eds) Characterisation of a debris avalanche deposit based on its geomorphic and internal features. Tenteniguada Basin, Gran Canaria (Spain). Abstracts of the 6th International Conference on Geomorphology, September 7–11, 2005. Zaragoza, Spain, p 313Google Scholar
  30. Siebert L (1984) Large volcanic debris avalanches: characteristics of source areas, deposits, and associated eruptions. J Volcanol Geotherm Res 22:163–197CrossRefGoogle Scholar
  31. Schneider J-L, Fisher RV (1998) Transportation and emplacement mechanisms of large volcanic debris avalanches: evidence from the northwest sector of Cantal Volcano (France). J Volcanol Geotherm Res 83:141–165CrossRefGoogle Scholar
  32. Takarada S, Ui T, Yamamoto Y (1999) Depositional features and transportation mechanism of valley-filling Iwasegawa and Kaida debris avalanches, Japan. Bull Volcanol 60:508–522CrossRefGoogle Scholar
  33. Ui T (1989) Discrimination between debris avalanches and other volcaniclastic deposits. In: Latter JH (ed) (1989) IAVCEI Proceedings in Volcanology 1, Volcanic Hazards. Springer-Verlag, Berlin, pp 201-209Google Scholar
  34. Ui T, Takarada S, Yoshimoto M (2000) Debris avalanches. In: Sigurdsson H, Houghton B, Menutt S, Rymer H, Stix J (eds) Encyclopedia of volcanoes. Academic, New York, pp 617–625Google Scholar
  35. Voight B (2000) Structural stability of andesite volcanoes and lava domes. Philos Trans R Soc Lond A 358:1663–1703CrossRefGoogle Scholar
  36. Voight B, Elsworth D (1997) Failure of volcanic slopes. Géotechnique 47(1):1–31CrossRefGoogle Scholar
  37. Voight B, Janda RJ, Glicken H, Douglass PM (1983) Nature and mechanics of the Mount St Helens rockslide—avalanche of 18 May 1980. Géotechnique 33:243–273Google Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • Alejandro Lomoschitz
    • 1
  • Javier Hervás
    • 2
  • Jorge Yepes
    • 1
  • Joaquín Meco
    • 3
  1. 1.Departamento de Ingeniería Civil. Campus de TafiraUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  2. 2.Institute for Environment and Sustainability, Joint Research Centre (JRC)European CommissionIspraItaly
  3. 3.Departamento de Biología. Campus de TafiraUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain

Personalised recommendations