, Volume 4, Issue 2, pp 163–176 | Cite as

A landslide database for Nicaragua: a tool for landslide-hazard management

  • Graziella Devoli
  • Wilfried Strauch
  • Guillermo Chávez
  • Kaare Høeg
Original Article


A digital landslide database has been created for Nicaragua to provide the scientific community and national authorities with a tool for landslide-hazard assessment, emergency management, land-use planning, development of early warning systems, and the implementation of public and private policies. The Instituto Nicaragüense de Estudios Territoriales (Nicaraguan Geosciences Institute, INETER) began to compile the database in a digital format in 2003 as part of a comprehensive geographical information system for all types of geohazards. Landslide data have been obtained from a variety of sources including newspapers, technical reports, and landslide inventory maps. Inventory maps are largely based on fieldwork and aerial-photo analyses conducted by foreign development agencies in collaboration with INETER and other Nicaraguan institutions. This paper presents the sources of landslide information, introduces the database, and presents the first analyses of the data at national and regional scales. The database currently contains spatial information for about 17,000 landslides that occurred in mountainous and volcanic terrains. Information is mainly recorded for the period 1826–2003, with a large number of events that occurred during the disastrous Hurricane Mitch in October 1998. The oldest historical event is dated at 1570, some events are recorded as prehistorical, and other events have unknown dates of occurrence. Debris flows have been the most common types of landslides, both in volcanic and nonvolcanic areas, but other types, including rockfalls and slides, have also been identified. Intense and prolonged rainfall, often associated with tropical cyclones, and seismic and volcanic activity represent the most important landslide triggers. At a regional scale, the influence of topographic (elevation, slope angle, slope aspect) and lithologic parameters on the occurrence of landslides was analyzed. The development of the database allowed us to define the state of knowledge on landslide processes in the Nicaragua and to provide a preliminary identification of areas affected by landslides.


Landslides Landslide database Nicaragua 



The landslide database utilizes data obtained from many Nicaraguan and foreign researchers who worked in cooperation projects with INETER and other Nicaraguan institutions. INETER geologists, geophysicists, and computer specialists participated in fieldwork and data analysis. The Department of Geophysics of INETER provided logistic support and computer facilities. The database was designed as part of the project “Mitigation and Prevention of Georisks in Nicaragua and Central America” executed by INETER in cooperation with the Federal Institute for Geosciences and Natural Resources (BGR, Germany). Data integration, interactive queries, and analyses were conducted at the International Centre for Geohazards (ICG) and at the University of Oslo (UiO), Norway. The authors greatly acknowledge PhD-candidate Bård Romstad from UiO for his support during the preparation of interactive queries. This paper is the ICG contribution no. 132.


  1. ALARN (2002) Mapas indicativos de peligros y propuesta de zonificación territorial. Project: Apoyo local para el análisis y manejo de los riesgos naturales (ALARN). Agencia Suiza para el desarrollo y la Cooperación COSUDE. Programa de Prevención de Desastres Naturales en América Central (PREVAC)Google Scholar
  2. Álvarez A, Devoli G, Chávez G, Mayorga E (2003) Amenazas por Deslizamientos en Ciudad Sandino, Estelí y Ocotal. Chapter III in ”Amenazas geológicas en Ciudad Sandino, Estelí y Ocotal, Nicaragua”. Dirección General de Geofísica, Instituto Nicaragüense d Estudios Territoriales, Managua, Nicaragua. Report prepared for the Project: “Elaboración de mapas de riesgos naturales en tres zonas de intervención del PRRAC”. Programa Regional de Reconstrucción de America Central (PRRAC), European UnionGoogle Scholar
  3. Amanti M, Casagli N, Catani F, D’orefice M e Motteran G (1996) Guida al censimento dei fenomeni franosi ed alla loro archiviazione. Miscell. Serv. Geol. d’It., VII, 109 pp, RomaGoogle Scholar
  4. Ardizzone F, Cardinali M, Carrara A, Guzzetti F, Reichenbach P (2002) Impact of mapping errors on the reliability of landslide hazard maps. Nat Hazards Earth Syst Sci 2:3–14Google Scholar
  5. Base de Datos Históricos sobre Desastres en Nicaragua. (2005) Sistema nacional para la prevención, mitigación y atención de desastre. Date of citation 4/04/2005
  6. Cannon SH, Haller KM, Ekstrom I, Schweig ES, Devoli G, Moore DW, Rafferty SA, Tarr AC (2002) Landslide response to Hurricane Mitch rainfall in seven study areas in Nicaragua. U.S. Geological Survey Open-File Report 01-0412-A Version 1.0 (posted 9 April)Google Scholar
  7. Carrara A, Cardinali M, Guzzetti F (1992) Uncertainty in assessing landslide hazard and risk. ITC J 1992-2, pp 172–183Google Scholar
  8. Carrara A, Cardinali M, Guzzetti F, Reichenbach P (1995) GIS technology in mapping landslide hazard. In: Carrara A, Guzzetti F (eds) Geographical information systems in assessing natural hazards. Kluwer, Dordrecht, The Netherlands, pp 135–175Google Scholar
  9. CEPAL (1999) Centroamérica: evaluación de los daños ocasionados por el Huracán Mitch, 1998. Sus implicaciones para el desarrollo económico y social y el medio ambiente Naciones Unidas. Comisión Económica para América Latina y el CaribeGoogle Scholar
  10. Colombo A, Lanterni L, Ramasco M, Troisi C (2005) Systematic GIS-based landslide inventory as the first step for effective landslide hazard-management. Landslide 2:291–301CrossRefGoogle Scholar
  11. Cruden DM (1991) A suggested method for a landslide summary. Working Party on World Landslide inventory. Bull Int Assoc Eng Geol 43:101–110CrossRefGoogle Scholar
  12. Cruden DM, Varnes DJ (1996) Landslide types and processes. In: Turner AK, Schuster RL (eds) Landslides investigation and mitigation, special report 247. Transportation Research Board, National Research Council, Washington, pp 36–75Google Scholar
  13. CNR-IRPI (2004) Internet map server. and SICI Date of citation 19/03/2004
  14. Dai FC, Lee CF, Ngai YY (2002) Landslide risk assessment and management: an overview. Eng Geol 64:65–87CrossRefGoogle Scholar
  15. Dellow GD, Glassey PJ, Lukovic B, Word PR, Morrison B (2003) Data sources of the New Zealand landslide database. Geophys Res Abstr 5, 13867 (European Geophysical Society, 2003)Google Scholar
  16. Devoli G, Morales A, Høeg K (2006). Historical landslides in Nicaragua—collection and analysis of data. Devoli, G., Morales, A., and Høeg K. 2006. Historical landslides in Nicaragua—collection and analysis of data [online]. Landslides. DOI: Published online 28 July 2006
  17. Dikau R, Cavallin A, Jäger S (1996) Databases and GIS for landslide research in Europe. Geomorphology 15:227–239CrossRefGoogle Scholar
  18. Fajfar D, Ravnik D, Ribičič, M, Komac M (2005) Slovenian national landslide database as a solid foundation for the landslide hazard analysis. Geophys Res Abstr Vol. 7, 02998 (European Geosciences Union, 2005)Google Scholar
  19. GA (2004). Australian landslides DATABASE. Australian Government, Geoscience Australia. Date of citation 31/03/2004
  20. Gaspar JL, Coulart C, Queiroz G, Silveira D, Gomes A (2004) Dynamic Structure and data sets of a GIS database for geological risk analysis in the Azores volcanic islands. Nat Hazards Earth Syst Sci 4:233–242 (European Geoscience Uniton 2004)Google Scholar
  21. Glade T, Crozier MJ (1996) Towards a national landslide information base for New Zealand. NZ Geogr 52(1):29–40CrossRefGoogle Scholar
  22. Grignon A, Bobrowsky P (2005) Empowering scientists, planners and the public to reduce landslide losses: a simplified web interface to access a national landslide database in Canada. Geophys Res Abstr Vol. 7, 05511, 2005 European Geosciences Union, 2005Google Scholar
  23. Grignon A, Bobrowsky P, Coultish T (2004) Landslide database management philosophy in the Geological Survey of Canada. Geo-engineering for the society and its environment. 57th Canadian Geotechnical Conference and the 15th joint CGS-IAAH Conference, Québec, Canada, October 24–27, 2004Google Scholar
  24. GSI (2005) Landslide working group Ireland. Geological survey of Ireland. Date of citation 4/07/2005
  25. Guinau M, Pallas R, Vilaplana JM (2005) A feasible methodology for landslide susceptibility assessment in developing countries: a case-study of NW Nicaragua alter Hurricane Mitch. Eng Geol 80:316–327CrossRefGoogle Scholar
  26. Guzzetti F, Tonelli G (2004) Information system on hydrological and geomorphological catastrophes in Italy (SICI): a tool for managing landslide and flood hazards. Nat Hazards Earth Syst Sci 4:213–232 (European Geosciences Union, 2004)CrossRefGoogle Scholar
  27. Guzzetti F, Cardinali M, Reichenbach P (1994) The AVI Project: a bibliographical and archive inventory of landslides and floods in Italy. Environ Manage 18 (4):623–633CrossRefGoogle Scholar
  28. Guzzetti F, Carrara A, Cardinali M, Reichenbach P (1999) Landslide hazard evaluation: a review of current techniques and their application in a multi-scale study, Central Italy. Geomorphology 31:181–216CrossRefGoogle Scholar
  29. Guzzetti F, Aleotti P, Malamud BD, Turcotte DL (2003) Comparison of three landslide event inventories in central and northern Italy. Proceedings of the 4th EGS Plinius Conference, Mallorca, Spain October 2002. Universitat de les Illes Balears (Spain)Google Scholar
  30. Hradecký P, Havlíček P, Kycl P, Mlčoch B, Mrázová Š, Novák Z, Opletal M, Rapprich V, Šebesta J, Ševèík J, Vorel T, Devoli G (2002) Estudio geologico de riesgos naturales. Área de Matagalpa (Hoja de mapa 1:50 000 3054/IV). Geological Survey of the Czech Republic (ČGS)Google Scholar
  31. INETER-AECI (2004) Sistema de Información geográfica aplicado a la cartografía de multiamenazas en el Departamento de Nueva Segovia. Amenaza Naturales por sismo, sequia y huracanes. Internal report Instituto Nicaragüense de Estudios Territoriales and Agencia Española de Cooperación Internacional, Managua, NicaraguaGoogle Scholar
  32. Inventario de Desastres en Centro América de 1960–1999 (2005) Centro de Coordinación para la Prevención de Desastres Naturales en América Central. Date of citation 8/03/2005
  33. Law 337 (2000) Ley Creadora del Sistema Nacional para la Prevención, Mitigación Atención de Desastres, Decreto 53-2000, La Gaceta, No 70, 7 of April, 2000, Managua, NicaraguaGoogle Scholar
  34. LSJ (2004) Landslides database. Research Committee for Landslide Information Network, The Landslide Society of Japan. Date of citation 31/03/2004
  35. Malamud BD, Turcotte DL, Guzzetti F, Reichenbach P (2004) Landslide inventories and their statistical properties. Earth Surf Processes Landf 29:687–711CrossRefGoogle Scholar
  36. Menendez-Duarte R, Marquinez J, G (2003) Slope instability in Nicaragua triggered by Hurricane Mitch: distribution of shallow mass movements. Environ Geol 44:290–300CrossRefGoogle Scholar
  37. NGU (2005) National landslide database. Norwegian Geological Survey, Trondheim Norway. Date of citation 4/07/2005
  38. Schmitz J, Gonzalez E, Vicuna E, Lopez E, Cornavaca R, Castillo H, Rosales MG, Espinoza J, Betanco M, (2003). Informe final: prevención, preparación, mitigación. Project Nic. 1004 Prevención, Mitigación y Atención a desastres en el municipio de San Juan de Limay, Departamento Estelí, Nicaragua. Agro Acción Alemana/ECHO Comisión Europea, Oficina de Ayuda Humanitaria/Instituto de Promoción Humana INPRHM-Estelí, NicaraguaGoogle Scholar
  39. Scott KM, Vallance JW, Kerle N, Macías JL, Strauch W, Devóli G (2005) Catastrophic precipitation-triggered lahar at Casita volcano, Nicaragua: occurrence, bulking and transformation. Earth Surf Processes Landf 30(1):59–79CrossRefGoogle Scholar
  40. Sheridan MF, Bonnard C, Carreno R, Siebe C, Strauch W, Navarro M, Calero JC, Trujillo NB (1999) 30 October 1998 rock fall/avalanche and breakout flow of Casita Volcano, Nicaragua, triggered by Hurricane Mitch. Int Newsl Landslide News 12:2–4Google Scholar
  41. Soeters R, van Westen CJ (1996) Slope instability recognition, analysis, and zonation. In: Turner A, Schuster R. (eds) Landslides: investigation and mitigation, Chapter 8. Transportation Research Board, National Research Council. Special Report 247, pp 129–177Google Scholar
  42. Weyl R (1980) Geology of Central America. Gebruder Borntraeger, Berlin, Stuttgart (Second, completely revised edition, 371 pp)Google Scholar
  43. WP/WLI (1993) Multilingual landslide glossary. The Canadian Geotechnical Society, BiTech RichmondGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • Graziella Devoli
    • 1
    • 3
  • Wilfried Strauch
    • 2
  • Guillermo Chávez
    • 2
  • Kaare Høeg
    • 1
    • 3
  1. 1.International Centre for Geohazardsc/o Norwegian Geotechnical InstituteOsloNorway
  2. 2.Instituto Nicaragüense de Estudios TerritorialesDirección General de GeofísicaManaguaNicaragua
  3. 3.Department of GeosciencesUniversity of OsloOsloNorway

Personalised recommendations