Advertisement

Landslides

, 3:195 | Cite as

The Zymoetz River landslide, British Columbia, Canada: description and dynamic analysis of a rock slide–debris flow

  • Scott McDougallEmail author
  • Nichole Boultbee
  • Oldrich Hungr
  • Doug Stead
  • James W. Schwab
Original Article

Abstract

The Zymoetz River landslide is a recent example of an extremely mobile type of landslide known as a rock slide–debris flow. It began as a failure of 900,000 m3 of bedrock, which mobilized an additional 500,000 m3 of surficial material in its path, transforming into a large debris flow that traveled over 4 km from its source. Seasonal snow and meltwater in the proximal part of the path were important factors. A recently developed dynamic model that accounts for material entrainment, DAN3D, was used to back-analyze this event. The two distinct phases of motion were modeled using different basal rheologies: a frictional model in the proximal path and a Voellmy model in the distal path, following the initiation of significant entrainment. Very good agreement between the observed and simulated results was achieved, suggesting that entrainment capabilities are essential for the successful simulation of this type of landslide.

Keywords

Rock slides Debris flows Entrainment Erosion Dynamic modeling 

Notes

Funding for this work was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) and Forest Renewal British Columbia. The British Columbia Ministry of Forests provided the digital elevation models that were used in the analysis (with permission of the Province of British Columbia). The authors thank Tim Davies, Maurie McSaveney, and Dick Iverson for their excellent critical reviews, which led to substantial improvements.

References

  1. Abele G (1997) Rockslide movement supported by the mobilization of groundwater-saturated valley floor sediments. Z Geomorphol 41:1–20Google Scholar
  2. Benz W (1990) Smooth particle hydrodynamics: a review. In: Buchler JR (ed) The numerical modelling of nonlinear stellar pulsations, Kluwer, Dordrecht, pp 269–288Google Scholar
  3. Boultbee N (2005) Characterization of the Zymoetz River rock avalanche. M.Sc. thesis, Simon Fraser University, VancouverGoogle Scholar
  4. Boultbee N, Stead D, Schwab J, Geertsema M (2006) The Zymoetz River rock avalanche, June 2002, British Columbia, Canada. Eng Geol 83(1):76–93CrossRefGoogle Scholar
  5. Buss E, Heim A (1881) Der Bergsturz von Elm. Worster, ZurichGoogle Scholar
  6. Fannin RJ, Wise MP (2001) An empirical–statistical model for debris flow travel distance. Can Geotech J 38:982–994CrossRefGoogle Scholar
  7. Geertsema M, Hungr O, Schwab JW, Evans SG (2006) A large rockslide–debris avalanche in cohesive soil at Pink Mountain, northeastern British Columbia, Canada. Eng Geol 83:64–75CrossRefGoogle Scholar
  8. Hsu KJ (1975) Catastrophic debris streams (sturzstroms) generated by rock fall. Geol Soc Amer Bull 86:129–140CrossRefGoogle Scholar
  9. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32:610–623CrossRefGoogle Scholar
  10. Hungr, O, Morgan GC, Kellerhals R (1984) Quantitative analysis of debris torrent hazards for design of remedial measures. Can Geotech J 21:663–677CrossRefGoogle Scholar
  11. Hungr O, Evans SG (1996) Rock avalanche runout prediction using a dynamic model. In: Senneset K (ed) Proceedings of the 7th international symposium on landslides, Trondheim, vol 1. Balkema, Rotterdam, pp 233–238Google Scholar
  12. Hungr O, Evans SG (2004) Entrainment of debris in rock avalanches; an analysis of a long run-out mechanism. Geol Soc Amer Bull 116(9/10):1240–1252CrossRefGoogle Scholar
  13. Hungr O, Evans SG, Bovis M, Hutchinson JN (2001) Review of the classification of landslides of the flow type. Environ Eng Geosci VII:221–238Google Scholar
  14. Hungr O, Dawson R, Kent A, Campbell D, Morgenstern NR (2002) Rapid flow slides of coal mine waste in British Columbia, Canada. In: Evans SG, Degraff JV (eds) Catastrophic landslides: effects, occurrence, and mechanisms. Geological Society of America reviews in engineering geology, vol 15. Geological Society of America, Boulder, pp 191–208Google Scholar
  15. Hungr O, Corominas J, Eberhardt E (2005a) State of the art paper #4, estimating landslide motion mechanism, travel distance and velocity. In: Hungr O, Fell R, Couture R, Eberhardt E (eds) Proceedings of the international conference on landslide risk management, Vancouver. Taylor and Francis, London, pp 99–128Google Scholar
  16. Hungr O, McDougall S, Bovis M (2005b) Entrainment of material by debris flows. In: Jakob M, Hungr O (eds) Debris-flow hazards and related phenomena. Springer-Verlag, Heidelberg, in association with Praxis, Chichester, pp 135–158CrossRefGoogle Scholar
  17. Hutchinson JN, Bhandari RK (1971) Undrained loading, a fundamental mechanism of mudflow and other mass movements. Geotechnique 21:353–358CrossRefGoogle Scholar
  18. Körner HJ (1976) Reichweite und Geschwindigkeit von Bergsturzen und Fleisschneelawinen. Rock Mech 8:225–256CrossRefGoogle Scholar
  19. Li T (1983) A mathematical model for predicting the extent of a major rockfall. Z Geomorphol 27:473–482Google Scholar
  20. McClung DM (2001) Superelevation of flowing avalanches around curved channel bends. J Geophys Res 106(B8):16489–16498CrossRefGoogle Scholar
  21. McDougall S, Hungr O (2004) A model for the analysis of rapid landslide motion across three-dimensional terrain. Can Geotech J 41(6):1084–1097CrossRefGoogle Scholar
  22. McDougall S, Hungr O (2005) Dynamic modelling of entrainment in rapid landslides. Can Geotech J 42:1437–1448CrossRefGoogle Scholar
  23. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574CrossRefGoogle Scholar
  24. Perla R, Cheng TT, McClung D (1980) A two-parameter model of snow-avalanche motion. J Glaciol 26(94):197–207Google Scholar
  25. Revellino P, Hungr O, Guadagno FM, Evans SG (2004) Velocity and runout prediction of destructive debris flows and debris avalanches in pyroclastic deposits, Campania Region, Italy. Environ Geol 45(3):295–311CrossRefGoogle Scholar
  26. Rickenmann D, Koch T (1997) Comparison of debris flow modelling approaches. In: Proceedings of the 1st international conference on debris-flow hazards mitigation, New York, pp 576–585Google Scholar
  27. Sassa K (1985) The mechanism of debris flows. In: Proceedings of the 11th international conference on soil mechanics and foundation engineering, San Francisco, pp 1173–1176Google Scholar
  28. Sassa K (1988) Geotechnical model for the motion of landslides. In: Proceedings of the 5th international symposium on landslides, Lausanne, pp 37–56Google Scholar
  29. Savage SB, Hutter K (1989) The motion of a finite mass of granular material down a rough incline. J Fluid Mech 199:177–215CrossRefGoogle Scholar
  30. Scheidegger AE (1973) On the prediction of the reach and velocity of catastrophic landslides. Rock Mech 5:231–236CrossRefGoogle Scholar
  31. Schwab J, Geertsema M, Evans SG (2003) Catastrophic rock avalanches, west-central British Columbia. In: Proceedings of the 3rd Canadian conference on geotechnique and natural hazards, Edmonton, pp 291–298Google Scholar
  32. Sherard JL, Woodward RJ, Gizienski SF, Clevenger WA (1963) Earth and earth-rock dams. Wiley, New York, pp 722Google Scholar
  33. Voight B, Sousa J (1994) Lessons from Ontake-san: a comparative analysis of debris avalanche dynamics. Eng Geol 38:261–297CrossRefGoogle Scholar
  34. Voellmy A (1955) Uber die Zerstorungskraft von Lawinen. Schweiz Bauztg 73:212–285Google Scholar
  35. Wang Z, Shen HT (1999) Lagrangian simulation of one-dimensional dam-break flow. J Hydraul Eng 125(11):1217–1220CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2006

Authors and Affiliations

  • Scott McDougall
    • 1
    Email author
  • Nichole Boultbee
    • 2
  • Oldrich Hungr
    • 1
  • Doug Stead
    • 3
  • James W. Schwab
    • 4
  1. 1.Department of Earth and Ocean SciencesUniversity of British ColumbiaVancouverCanada
  2. 2.Golder AssociatesSquamishCanada
  3. 3.Department of Earth SciencesSimon Fraser UniversityBurnabyCanada
  4. 4.Northern Interior Forest RegionBritish Columbia Ministry of ForestsSmithersCanada

Personalised recommendations