Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Ebola spillover correlates with bat diversity

Abstract

Some of the world’s deadliest diseases and greatest public health challenges are zoonoses from wildlife, such as Ebola (Ebolavirus). Due to the increasing number of cases in recent years, it has been widely hypothesized that increasing human population densities and anthropogenic disturbance largely explain outbreaks of Ebola virus disease in humans. While studies indicate that ebolaviruses are likely hosted by bats (Chiroptera), their role in outbreaks of the disease remains unclear. We tested whether bat species richness (total and within families), human population density, and anthropogenic disturbance explained the occurrence of Ebola virus disease spillovers within Africa using both generalized linear models and Maxent models. We demonstrate that spillover occurred in areas with high species richness of nycterid bats and low levels of both anthropogenic disturbance and human population density. Outbreaks of Ebola virus disease have devastating effects on people and communities and our results provide an important step toward understanding how and where Ebola virus disease may spill over to human populations.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adjemian J, Farnon EC, Tschioko F et al (2011) Outbreak of Marburg hemorrhagic fever among miners in Kamwenge and Ibanda districts, Uganda, 2007. J Infect Dis 204:S796–S799. https://doi.org/10.1093/infdis/jir312

  2. Alexander KA, Sanderson CE, Marathe M, Lewis BL, Rivers CM, Shaman J, Drake JM, Lofgren E, Dato VM, Eisenberg MC, Eubank S (2015) What factors might have led to the emergence of Ebola in West Africa? PLoS Negl Trop Dis 9:e0003652. https://doi.org/10.1371/journal.pntd.0003652

  3. Allen T, Murray KA, Zambrana-Torrelio C, Morse SS, Rondinini C, di Marco M, Breit N, Olival KJ, Daszak P (2017) Global hotspots and correlates of emerging zoonotic diseases. Nat Commun 8:1124. https://doi.org/10.1038/s41467-017-00923-8

  4. Allouche O, Tsoar A, Kadom R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232. https://doi.org/10.1111/j.1365-2664.2006.01214.x

  5. Amman BR, Nyakarahuka L, McElroy AK, Dodd KA, Sealy TK, Schuh AJ, Shoemaker TR, Balinandi S, Atimnedi P, Kaboyo W, Nichol ST, Towner JS (2014) Marburgvirus resurgence in Kitaka Mine bat population after extermination attempts, Uganda. Emerg Infect Dis 20:1761–1764. https://doi.org/10.3201/eid2010.140696

  6. Anti P, Owusu M, Agbenyega O, Annan A, Badu EK, Nkrumah EE, Tschapka M, Oppong S, Adu-Sarkodie Y, Drosten C (2015) Human-bat interactions in rural West Africa. Emerg Infect Dis 21:1418–1421. https://doi.org/10.3201/eid2108.142015

  7. Austin M (2002) Spatial prediction of species distribution: an interface between ecological theory and statistical modelling. Ecol Model 157:101–118. https://doi.org/10.1016/S0304-3800(02)00205-3

  8. Balk DL, Deichmann U, Yetman G, Pozzi F, Hay SI, Nelson A (2006) Determining global population distribution: methods, applications and data. Adv Parasitol 62:119–156. https://doi.org/10.1016/S0065-308X(05)62004-0

  9. Bausch DG, Schwarz L (2014) Outbreak of Ebola virus disease in Guinea: where ecology meets economy. PLoS Negl Trop Dis 8:e3056. https://doi.org/10.1371/journal.pntd.0003056

  10. Becquart P, Wauquier N, Mahlakõiv T, Nkoghe D, Padilla C, Souris M, Ollomo B, Gonzalez JP, de Lamballerie X, Kazanji M, Leroy EM (2010) High prevalence of both humoral and cellular immunity to Zaire Ebolavirus among rural populations in Gabon. PLoS One 5:e9126. https://doi.org/10.1371/journal.pone.0009126

  11. Bennett AJ, Bushmaker T, Cameron K, Ondzie A, Niama FR, Parra HJ, Mombouli JV, Olson SH, Munster VJ, Goldberg TL (2019) Diverse RNA viruses of arthropod origin in the blood of fruit bats suggest a link between bat and arthropod viromes. Virology 528:64–72. https://doi.org/10.1016/J.VIROL.2018.12.009

  12. Boumandouki P, Formenty P, Epelboin A et al (2005) Prise en charge des malades et des défunts lors de l’épidémie de fièvre hémorragique due au virus Ebola d’octobre à décembre 2003 au Congo. Bull Soc Pathol Exot 98:218–223

  13. Brierley L, Vonhof MJ, Olival KJ, Daszak P, Jones KE (2016) Quantifying global drivers of zoonotic bat viruses: a process-based perspective. Am Nat 187:E53–E64. https://doi.org/10.1086/684391

  14. Brink AB, Eva HD (2009) Monitoring 25 years of land cover change dynamics in Africa: a sample based remote sensing approach. Appl Geogr 29:501–512. https://doi.org/10.1016/j.apgeog.2008.10.004

  15. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New York

  16. Caron A, Bourgarel M, Cappelle J et al (2018) Ebola virus maintenance: if not (only) bats, what else? Viruses 10:549. https://doi.org/10.3390/v10100549

  17. Center for International Earth Science Information Network (2005) Population Count Grid, v3: Gridded Population of the World (GPW), v3 | SEDAC. http://sedac.ciesin.columbia.edu/data/set/gpw-v3-population-count. Accessed 13 Oct 2015

  18. Center for International Earth Science Information Network (2013) Global Roads Open Access Data Set (gROADS), v1: Global Roads | SEDAC. http://sedac.ciesin.columbia.edu/data/set/groads-global-roads-open-access-v1. Accessed 13 Oct 2015

  19. Changula K, Kajihara M, Mweene AS, Takada A (2014) Ebola and Marburg virus diseases in Africa: increased risk of outbreaks in previously unaffected areas? Microbiol Immunol 58:483–491. https://doi.org/10.1111/1348-0421.12181

  20. Daszak P (2000) Emerging infectious diseases of wildlife-- threats to biodiversity and human health. Science 287(80):443–449. https://doi.org/10.1126/science.287.5452.443

  21. Daszak P, Cunningham AAA, Hyatt ADD (2001) Anthropogenic environmental change and the emergence of infectious diseases in wildlife. Acta Trop 78:103–116. https://doi.org/10.1016/s0001-706x(00)00179-0

  22. Davis S, Calvet E, Leirs H (2005) Fluctuating rodent populations and risk to humans from rodent-borne zoonoses. Vector Borne Zoonotic Dis 5:305–314

  23. De Nys HM, Kingebeni PM, Keita AK et al (2018) Survey of Ebola viruses in frugivorous and insectivorous bats in Guinea, Cameroon, and the Democratic Republic of the Congo, 2015–2017. Emerg Infect Dis 24:2228–2240. https://doi.org/10.3201/eid2412.180740

  24. Dutto M, Bertero M, Petrosillo N, Pombi M, Otranto D (2016) Ebola virus and arthropods: a literature review and entomological consideration on the vector role. Bull Soc Pathol Exot 109:244–247. https://doi.org/10.1007/s13149-016-0525-y

  25. Elith J, Graham CH, Anderson RP et al (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151. https://doi.org/10.1111/j.2006.0906-7590.04596.x

  26. Elston JWT, Moosa AJ, Moses F et al (2015) Impact of the Ebola outbreak on health systems and population health in Sierra Leone. J Public Health (Bangkok) 38:673–678. https://doi.org/10.1093/pubmed/fdv158

  27. Fenton MB, Thomas DW (1980) Dry-season overlap in activity patterns, habitat use, and prey selection by sympatric African insectivorous bats. Biotropica 12:81–90. https://doi.org/10.2307/2387723

  28. Fenton MB, Swanepoel CM, Brigham RM et al (1990) Foraging behavior and prey selection by large slit-faced bats (Nycteris grandis; Chiroptera: Nycteridae). Biotropica 22:2–8

  29. Fenton MB, Rautenbach IL, Chipese D et al (1993) Variation in foraging behaviour, habitat use, and diet of large slit-faced bats (Nycteris grandis). Z Säugetierkd 58:65–74

  30. Forman RTT, Alexander LE (1998) Roads and their major ecological effects. Annu Rev Ecol Syst 29:207–231. https://doi.org/10.1146/annurev.ecolsys.29.1.207

  31. Fujita N, Miller A, Miller G et al (2009) Imported case of Marburg hemorrhagic fever - Colorado, 2008. Morb Mortal Wkly Rep 58:1377–1381

  32. Ghanem SJ, Voigt CC (2012) Increasing awareness of ecosystem services provided by bats. Adv. Study Behav. 44: 279–302. https://doi.org/10.1016/B978-0-12-394288-3.00007-1

  33. Gill JA, Sutherland WJ, Watkinson AR (1996) A method to quantify the effects of human disturbance on animal populations. J Appl Ecol 33:786–792. https://doi.org/10.2307/2404948

  34. Gire SK, Goba A, Andersen KG, Sealfon RSG, Park DJ, Kanneh L, Jalloh S, Momoh M, Fullah M, Dudas G, Wohl S, Moses LM, Yozwiak NL, Winnicki S, Matranga CB, Malboeuf CM, Qu J, Gladden AD, Schaffner SF, Yang X, Jiang PP, Nekoui M, Colubri A, Coomber MR, Fonnie M, Moigboi A, Gbakie M, Kamara FK, Tucker V, Konuwa E, Saffa S, Sellu J, Jalloh AA, Kovoma A, Koninga J, Mustapha I, Kargbo K, Foday M, Yillah M, Kanneh F, Robert W, Massally JLB, Chapman SB, Bochicchio J, Murphy C, Nusbaum C, Young C, Birren BW, Grant DS, Scheiffelin JS, Lander ES, Happi C, Gevao SM, Gnirke A, Rambaut A, Garry RF, Khan SH, Sabeti PC (2014) Genomic surveillance elucidates Ebola virus origin and transmission during the 2014 outbreak. Science 345 (6202):1369-1372

  35. Glennon EE, Jephcott FL, Restif O, Wood JLN (2019) Estimating undetected Ebola spillovers. PLoS Negl Trop Dis 13:e0007428. https://doi.org/10.1371/journal.pntd.0007428

  36. Goldstein T, Anthony SJ, Gbakima A, Bird BH, Bangura J, Tremeau-Bravard A, Belaganahalli MN, Wells HL, Dhanota JK, Liang E, Grodus M, Jangra RK, DeJesus V, Lasso G, Smith BR, Jambai A, Kamara BO, Kamara S, Bangura W, Monagin C, Shapira S, Johnson CK, Saylors K, Rubin EM, Chandran K, Lipkin WI, Mazet JAK (2018) The discovery of Bombali virus adds further support for bats as hosts of ebolaviruses. Nat Microbiol 3:1084–1089. https://doi.org/10.1038/s41564-018-0227-2

  37. Groseth A, Feldmann H, Strong JE (2007) The ecology of Ebola virus. Trends Microbiol 15:408–416. https://doi.org/10.1016/j.tim.2007.08.001

  38. Han BA, Schmidt JP, Alexander LW, Bowden SE, Hayman DT, Drake JM (2016) Undiscovered bat hosts of filoviruses. PLoS Negl Trop Dis 10:e0004815. https://doi.org/10.1371/journal.pntd.0004815

  39. Hanley JA, McNeil BJ (1982) The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology 143:29–36. https://doi.org/10.1148/radiology.143.1.7063747

  40. Happold M, Happold DCD (eds) (2013) Mammals of Africa, vol IV. Hedgehogs, Shrews and Bats. Bloomsbury Publishing, London

  41. Hayman DTS, Emmerich P, Yu M, Wang LF, Suu-Ire R, Fooks AR, Cunningham AA, Wood JL (2010) Long-term survival of an urban fruit bat seropositive for Ebola and Lagos bat viruses. PLoS One 5:e11978. https://doi.org/10.1371/journal.pone.0011978

  42. Hayman DTS, Yu M, Crameri G, Wang LF, Suu-Ire R, Wood JL, Cunningham AA (2012) Ebola virus antibodies in fruit bats, Ghana, West Africa. Emerg Infect Dis 18:1207–1209. https://doi.org/10.3201/eid1807.111654

  43. Hijmans RJ, van Etten J (2012) Raster: geographic analysis and modeling with raster data. R Package Version 2:0–12. http://cran.r-project.org/package=raster

  44. Hijmans RJ, Cameron SE, Parra JL et al (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

  45. Hijmans RJ, Phillips S, Leathwick J, Elith J (2013) Package “dismo”: species distribution modeling

  46. Jones KE, Patel NG, Levy MA, Storeygard A, Balk D, Gittleman JL, Daszak P (2008) Global trends in emerging infectious diseases. Nature 451:990–993. https://doi.org/10.1038/nature06536

  47. Kamins AO, Restif O, Ntiamoa-Baidu Y, Suu-Ire R, Hayman DT, Cunningham AA, Wood JL, Rowcliffe JM (2011) Uncovering the fruit bat bushmeat commodity chain and the true extent of fruit bat hunting in Ghana, West Africa. Biol Conserv 144:3000–3008. https://doi.org/10.1016/j.biocon.2011.09.003

  48. Kunz TH, Braun de Torrez E, Bauer D, Lobova T, Fleming TH (2011) Ecosystem services provided by bats. Ann N Y Acad Sci 1223:1–38. https://doi.org/10.1111/j.1749-6632.2011.06004.x

  49. Laporta GZ, Laporta GZ (2014) Landscape fragmentation and Ebola outbreaks. Mem Inst Oswaldo Cruz 109:1088–1088. https://doi.org/10.1590/0074-0276140417

  50. Lê S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18. https://doi.org/10.18637/jss.v025.i01

  51. Leendertz SAJ (2016) Testing new hypotheses regarding Ebolavirus reservoirs. Viruses 8:3–8. https://doi.org/10.3390/v8020030

  52. Leendertz SAJ, Gogarten JF, Düx A et al (2015) Assessing the evidence supporting fruit bats as the primary reservoirs for Ebola viruses. Ecohealth 13:18–25. https://doi.org/10.1007/s10393-015-1053-0

  53. Leirs H, Mills JN, Krebs JW et al (1999) Search for the Ebola virus reservoir in Kikwit, Democratic Republic of the Congo: reflections on a vertebrate collection. J Infect Dis 179:S155–S163. https://doi.org/10.1086/514299

  54. Leroy EM, Rouquet P, Formenty P, Souquière S, Kilbourne A, Froment JM, Bermejo M, Smit S, Karesh W, Swanepoel R, Zaki SR, Rollin PE (2004) Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science 303:387–390. https://doi.org/10.1126/science.1092528

  55. Leroy EM, Kumulungui B, Pourrut X, Rouquet P, Hassanin A, Yaba P, Délicat A, Paweska JT, Gonzalez JP, Swanepoel R (2005) Fruit bats as reservoirs of Ebola virus. Nature 438:575–576. https://doi.org/10.1038/438575a

  56. Leroy EM, Epelboin A, Mondonge V, Pourrut X, Gonzalez JP, Muyembe-Tamfum JJ, Formenty P (2009) Human Ebola outbreak resulting from direct exposure to fruit bats in Luebo, Democratic Republic of Congo, 2007. Vector Borne Zoonotic Dis 9:723–728. https://doi.org/10.1089/vbz.2008.0167

  57. Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J Biogeogr 40:778–789. https://doi.org/10.1111/jbi.12058

  58. López-Baucells A, Rocha R, Fernández-Llamazares Á (2018) When bats go viral: negative framings in virological research imperil bat conservation. Mammal Rev 48:62–66. https://doi.org/10.1111/mam.12110

  59. Luis AD, Hayman DTS, O’Shea TJ et al (2013) A comparison of bats and rodents as reservoirs of zoonotic viruses: are bats special? Proc R Soc B 280:20122753. https://doi.org/10.1098/rspb.2012.2753

  60. Mahy BWJ, Brown CC (2000) Emerging zoonoses: crossing the species barrier. Rev Sci Tech 19:33–40

  61. McCain CM (2007) Could temperature and water availability drive elevational species richness patterns? A global case study for bats. Glob Ecol Biogeogr 16:1–13. https://doi.org/10.1111/j.1466-8238.2006.00263.x

  62. Mickleburgh S, Waylen K, Racey P (2009) Bats as bushmeat: a global review. Oryx 43:217–234. https://doi.org/10.1017/S0030605308000938

  63. Mildenstein T, Tanshi I, Racey PA (2016) Exploitation of bats for Bushmeat and medicine. In: Voigt C, Kingston T (eds) Bats in the Anthropocene: conservation of bats in a changing world. Springer International Publishing, Cham, pp 325–375

  64. Monadjem A (2005) Survival and roost-site selection in the African bat Nycteris thebaica (Chiroptera: Nycteridae) in Swaziland. Belg J Zool 135:103–107

  65. Monadjem A, Reside A, Cornut J, Perrin MR (2009) Roost selection and home range of an African insectivorous bat Nycteris thebaica (Chiroptera, Nycteridae). Mammalia 73:353–359. https://doi.org/10.1515/mamm.2009.056

  66. Monadjem A, Taylor PJ, Cotterill FPD, Schoeman MC (2010) Bats of southern and Central Africa: a biogeographic and taxonomic synthesis. Wits University Press, Johannesburg

  67. Monadjem A, Taylor PJ, Conenna I, Schoeman MC (2018) Species richness patterns and functional traits of the bat fauna of arid southern Africa. Hystrix. https://doi.org/10.4404/hystrix-00016-2017

  68. Morand S, Owers KA, Waret-Szkuta A, McIntyre KM, Baylis M (2013) Climate variability and outbreaks of infectious diseases in Europe. Sci Rep 3:888–900. https://doi.org/10.1038/srep01774

  69. Mulangu S, Alfonso VH, Hoff NA, Doshi RH, Mulembakani P, Kisalu NK, Okitolonda-Wemakoy E, Kebela BI, Marcus H, Shiloach J, Phue JN, Wright LL, Muyembe-Tamfum JJ, Sullivan NJ, Rimoin AW (2018) Serologic evidence of Ebolavirus infection in a population with no history of outbreaks in the Democratic Republic of the Congo. J Infect Dis 217:529–537. https://doi.org/10.1093/infdis/jix619

  70. Muyembe-Tamfum JJ, Mulangu S, Masumu J et al (2012) Ebola virus outbreaks in Africa: past and present. Onderstepoort J Vet Res 79: 1–8. https://doi.org/10.4102/ojvr.v79i2.451

  71. Mylne A, Brady OJ, Huang Z, Pigott DM, Golding N, Kraemer MUG, Hay SI (2014) A comprehensive database of the geographic spread of past human Ebola outbreaks. Sci Data 1:140042–140010. https://doi.org/10.1038/sdata.2014.42

  72. Nkoghe D, Formenty P, Leroy EM et al (2005) Plusieurs épidémies de fièvre hémorragique due au virus Ebola au Gabon, d’octobre 2001 à avril 2002. Bull Soc Pathol Exot 98:224–229

  73. Nkoghe D, Kone ML, Yada A, Leroy E (2011a) A limited outbreak of Ebola haemorrhagic fever in Etoumbi, Republic of Congo, 2005. Trans R Soc Trop Med Hyg 105:466–472. https://doi.org/10.1016/j.trstmh.2011.04.011

  74. Nkoghe D, Padilla C, Becquart P et al (2011b) Risk factors for Zaire Ebolavirus-specific IgG in rural Gabonese populations. J Infect Dis 204:S768–S775. https://doi.org/10.1093/infdis/jir344

  75. Ogawa H, Miyamoto H, Nakayama E et al (2015) Seroepidemiological prevalence of multiple species of filoviruses in fruit bats (Eidolon helvum) migrating in Africa. J Infect Dis 212(Suppl):S101–S108. https://doi.org/10.1093/infdis/jiv063

  76. Olival KJ, Hayman DTS (2014) Filoviruses in bats: current knowledge and future directions. Viruses 6:1759–1788. https://doi.org/10.3390/v6041759

  77. Olival KJ, Hosseini PR, Zambrana-Torrelio C, Ross N, Bogich TL, Daszak P (2017) Host and viral traits predict zoonotic spillover from mammals. Nature 546:646–650. https://doi.org/10.1038/nature22975

  78. Olivero J, Fa JE, Real R, Márquez AL, Farfán MA, Vargas JM, Gaveau D, Salim MA, Park D, Suter J, King S, Leendertz SA, Sheil D, Nasi R (2017) Recent loss of closed forests is associated with Ebola virus disease outbreaks. Sci Rep 7:14291. https://doi.org/10.1038/s41598-017-14727-9

  79. Olson DM, Dinerstein E, Wikramanayake ED et al (2001) Terrestrial ecoregions of the world: a new map of life on earth: a new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51:933–938. https://doi.org/10.1641/0006-3568(2001)051[0933:teotwa]2.0.co;2

  80. Patz JA, Daszak P, Tabor GM, Aguirre AA, Pearl M, Epstein J, Wolfe ND, Kilpatrick AM, Foufopoulos J, Molyneux D, Bradley DJ, Working Group on Land Use Change and Disease Emergence (2004) Unhealthy landscapes: policy recommendations on land use change and infectious disease emergence. Environ Health Perspect 112:1092–1098. https://doi.org/10.1289/EHP.6877

  81. Phillips SJ, Dudík M (2008) Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175. https://doi.org/10.1111/j.0906-7590.2008.5203.x

  82. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

  83. Pigott DM, Golding N, Mylne A, Huang Z, Henry AJ, Weiss DJ, Brady OJ, Kraemer MU, Smith DL, Moyes CL, Bhatt S, Gething PW, Horby PW, Bogoch II, Brownstein JS, Mekaru SR, Tatem AJ, Khan K, Hay SI (2014) Mapping the zoonotic niche of Ebola virus disease in Africa. Elife 3:e04395. https://doi.org/10.7554/eLife.04395

  84. Pigott DM, Millear AI, Earl L et al (2016) Updates to the zoonotic niche map of Ebola virus disease in Africa. Elife 5:e16412. https://doi.org/10.7554/eLife.16412

  85. Plowright RK, Field HE, Smith C, Divljan A, Palmer C, Tabor G, Daszak P, Foley JE (2008) Reproduction and nutritional stress are risk factors for Hendra virus infection in little red flying foxes (Pteropus scapulatus). Proc R Soc B 275:861–869. https://doi.org/10.1098/rspb.2007.1260

  86. Plowright RK, Eby P, Hudson PJ, Smith IL, Westcott D, Bryden WL, Middleton D, Reid PA, McFarlane R, Martin G, Tabor GM, Skerratt LF, Anderson DL, Crameri G, Quammen D, Jordan D, Freeman P, Wang LF, Epstein JH, Marsh GA, Kung NY, McCallum H (2015) Ecological dynamics of emerging bat virus spillover. Proc R Soc B 282:20142124. https://doi.org/10.1098/rspb.2014.2124

  87. Plowright RK, Parrish CR, McCallum H, Hudson PJ, Ko AI, Graham AL, Lloyd-Smith JO (2017) Pathways to zoonotic spillover. Nat Rev Microbiol 15:502–510. https://doi.org/10.1038/nrmicro.2017.45

  88. Pourrut X, Souris M, Towner JS, Rollin PE, Nichol ST, Gonzalez JP, Leroy E (2009) Large serological survey showing cocirculation of Ebola and Marburg viruses in Gabonese bat populations, and a high seroprevalence of both viruses in Rousettus aegyptiacus. BMC Infect Dis 9:159. https://doi.org/10.1186/1471-2334-9-159

  89. R Core Team (2013) R: A language and environment for statistical computing

  90. Ramankutty E (2008) Putting people in the map: anthropogenic biomes of the world. Front Ecol Environ 6:439–447. https://doi.org/10.1890/070062

  91. Ramankutty N, Evan AT, Monfreda C, Foley JA (2008) Farming the planet: 1. Geographic distribution of global agricultural lands in the year 2000. Glob Biogeochem Cycles 22:GB1003. https://doi.org/10.1029/2007GB002952

  92. Ramankutty N, Evan AT, Monfreda C, Foley JA (2010a) Global Agricultural Lands: Croplands, 2000

  93. Ramankutty N, Evan AT, Monfreda C, Foley JA (2010b) Global Agricultural Lands: Pastures, 2000

  94. Rebelo H, Tarraso P, Jones G (2010) Predicted impact of climate change on European bats in relation to their biogeographic patterns. Glob Chang Biol 16:561–576. https://doi.org/10.1111/j.1365-2486.2009.02021.x

  95. Renner IW, Elith J, Baddeley A et al (2015) Point process models for presence-only analysis. Methods Ecol Evol 6:366–379. https://doi.org/10.1111/2041-210X.12352

  96. Rosevear DR (1965) The bats of West Africa. British Museum (Natural History), London

  97. Rulli MC, Santini M, Hayman DTS, D’Odorico P (2017) The nexus between forest fragmentation in Africa and Ebola virus disease outbreaks. Sci Rep 7:41613. https://doi.org/10.1038/srep41613

  98. Sanderson EW, Jaiteh M, Levy MA et al (2002) The human footprint and the last of the wild. Bioscience 52:891–904. https://doi.org/10.1641/0006-3568(2002)052[0891:THFATL]2.0.CO;2

  99. Schipper J, Chanson JS, Chiozza F, Cox NA, Hoffmann M, Katariya V, Lamoreux J, Rodrigues AS, Stuart SN, Temple HJ, Baillie J, Boitani L, Lacher te Jr, Mittermeier RA, Smith AT, Absolon D, Aguiar JM, Amori G, Bakkour N, Baldi R, Berridge RJ, Bielby J, Black PA, Blanc JJ, Brooks TM, Burton JA, Butynski TM, Catullo G, Chapman R, Cokeliss Z, Collen B, Conroy J, Cooke JG, da Fonseca GA, Derocher AE, Dublin HT, Duckworth JW, Emmons L, Emslie RH, Festa-Bianchet M, Foster M, Foster S, Garshelis DL, Gates C, Gimenez-Dixon M, Gonzalez S, Gonzalez-Maya JF, Good TC, Hammerson G, Hammond PS, Happold D, Happold M, Hare J, Harris RB, Hawkins CE, Haywood M, Heaney LR, Hedges S, Helgen KM, Hilton-Taylor C, Hussain SA, Ishii N, Jefferson TA, Jenkins RK, Johnston CH, Keith M, Kingdon J, Knox DH, Kovacs KM, Langhammer P, Leus K, Lewison R, Lichtenstein G, Lowry LF, Macavoy Z, Mace GM, Mallon DP, Masi M, McKnight M, Medellín RA, Medici P, Mills G, Moehlman PD, Molur S, Mora A, Nowell K, Oates JF, Olech W, Oliver WR, Oprea M, Patterson BD, Perrin WF, Polidoro BA, Pollock C, Powel A, Protas Y, Racey P, Ragle J, Ramani P, Rathbun G, Reeves RR, Reilly SB, Reynolds JE 3rd, Rondinini C, Rosell-Ambal RG, Rulli M, Rylands AB, Savini S, Schank CJ, Sechrest W, Self-Sullivan C, Shoemaker A, Sillero-Zubiri C, de Silva N, Smith DE, Srinivasulu C, Stephenson PJ, van Strien N, Talukdar BK, Taylor BL, Timmins R, Tirira DG, Tognelli MF, Tsytsulina K, Veiga LM, Vié JC, Williamson EA, Wyatt SA, Xie Y, Young BE (2008) The status of the world’s land and marine mammals: diversity, threat and knowledge. Science 322:225–230

  100. Schneeberger K, Voigt CC (2016) Zoonotic viruses and conservation of bats. In: Kingston T, Voigt C (eds) Bats in the Anthropocene: conservation of bats in a changing world. Springer International Publishing, Cham, pp 263–292

  101. Schoepp RJ, Rossi CA, Khan SH, Goba A, Fair JN (2014) Undiagnosed acute viral febrile illnesses, Sierra Leone. Emerg Infect Dis 20:1176–1182. https://doi.org/10.3201/eid2007.131265

  102. Spengler JR, Ervin ED, Towner JS, Rollin PE, Nichol ST (2016) Perspectives on West Africa Ebola virus disease outbreak, 2013-2016. Emerg Infect Dis 22:956–963. https://doi.org/10.3201/eid2206.160021

  103. Swanepoel R (1996) Experimental inoculation of plants and animals with Ebola virus. Emerg Infect Dis 2:321–325. https://doi.org/10.3201/eid0204.960407

  104. Swanepoel R, Smit SB, Rollin PE, Formenty P, Leman PA, Kemp A, Burt FJ, Grobbelaar AA, Croft J, Bausch DG, Zeller H, Leirs H, Braack LE, Libande ML, Zaki S, Nichol ST, Ksiazek TG, Paweska JT, International Scientific and Technical Committee for Marburg Hemorrhagic Fever Control in the Democratic Republic of Congo (2007) Studies of reservoir hosts for Marburg virus. Emerg Infect Dis 13:1847–1851. https://doi.org/10.3201/eid1312.071115

  105. Weiss RA, McMichael AJ (2004) Social and environmental risk factors in the emergence of infectious diseases. Nat Med 10:S70–S76. https://doi.org/10.1038/nm1150

  106. Wilkinson A, Leach M (2015) Briefing: Ebola-myths, realities, and structural violence. Afr Aff 114:136–148. https://doi.org/10.1093/afraf/adu080

  107. Wilkinson DA, Marshall JC, French NP, Hayman DTS (2018) Habitat fragmentation, biodiversity loss and the risk of novel infectious disease emergence. J R Soc Interface 15:20180403. https://doi.org/10.1098/rsif.2018.0403

  108. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309. https://doi.org/10.1146/annurev.ecolsys.34.012103.144032

  109. Wolfe ND, Daszak P, Kilpatrick AM, Burke DS (2005) Bushmeat hunting, deforestation, and prediction of zoonotic disease emergence. Emerg Infect Dis 11:1822–1827

  110. World Health Organization (2019) Ebola virus disease – Democratic Republic of the Congo

Download references

Acknowledgments

We thank Kathleen Alexander for her helpful suggestions for this manuscript and Kok Ben Toh for helping debug code.

Funding

This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No. DGE-1315138 (JTS).

Author information

Correspondence to Julie Teresa Shapiro.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM1

(DOCX 41 kb).

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shapiro, J.T., Sovie, A.R., Faller, C.R. et al. Ebola spillover correlates with bat diversity. Eur J Wildl Res 66, 12 (2020). https://doi.org/10.1007/s10344-019-1346-7

Download citation

Keywords

  • Bats
  • Biodiversity
  • Chiroptera
  • Ebola
  • Emerging pathogens
  • Public health
  • Zoonotic disease