Advertisement

Cortisol in hair: a comparison between wild and feral cats in the north-eastern Alps

  • Marcello Franchini
  • Alberto Prandi
  • Stefano FilacordaEmail author
  • Eva Nilanthi Pezzin
  • Yannick Fanin
  • Antonella Comin
Original Article
  • 62 Downloads

Abstract

The quantification of glucocorticoid metabolites in hair is a non-invasive tool that provides important information regarding the endocrine status and represents a valuable method for studying potential stressors that may affect carnivores under both natural and non-natural conditions. Cortisol is the main glucocorticoid hormone of the hypothalamic-pituitary-adrenal gland axis and is considered a standard stress indicator for animal welfare. The current study aimed to compare cortisol levels extracted from hair of both dead, frozen European wildcats (Felis silvestris silvestris) and living feral individuals (Felis silvestris catus) living in different environmental conditions. The results obtained revealed that wild individuals exhibited a significantly (p < 0.001) higher cortisol concentration (n = 15, mean ± SD = 8.91 ± 4.48 pg/mg) than feral ones (n = 10, mean ± SD = 3.57 ± 1.25 pg/mg), probably as a result of both the physiological and/or environmental factors to which each subspecies was subject. This is the first study in which cortisol concentrations have been compared within the Felis silvestris subspecies, thus enriching the scarce information available for the Felidae. Nevertheless, further research is needed to better understand the various physiological and ecological factors affecting the adrenocortical activity of species or populations living in different environmental contexts.

Keywords

Wildcat Feral cat Felis silvestris Hair cortisol Adrenocortical activity 

Notes

Acknowledgments

We wish to thank both the staff working for the Province of Gorizia and the Natural History Museums of Pordenone, Udine, and Trieste for the hair samples provided. Furthermore, the authors are indebted to all the wildlife technicians, interns, and volunteers involved in the collection of field data.

References

  1. Accorsi PA, Carloni E, Valsecchi P, Viaggaini R, Gamberoni M, Tamanini C, Seren E (2008) Cortisol determination in hair and faeces from domestic cats and dogs. Gen Comp Endocrinol 155:398–402.  https://doi.org/10.1016/j.ygcen.2007.07.002 CrossRefPubMedGoogle Scholar
  2. Angelini P, Augello R, Bagnaia R, Bianco P, Capogrossi R, Cardillo A, Ercole S, Francescato C, Giacanelli V, Laureti L, Lugeri F, Lugeri N, Novellino E, Oriolo G, Papallo O, Serra B (2009) Il Progetto Carta della Natura. Linee guida per la cartografia e la valutazione degli habitat alla scala 1:50.000 http://www.isprambiente.gov.it/files/carta-della-natura/cdn-manuale.pdf
  3. Anile S, Bizzarri L, Lacrimini M, Sforzi A, Ragni B, Devillard S (2017) Home-range size of the European wildcat (Felis silvestris silvestris): a report from two areas in Central Italy. Mammalia 82(1):1–11.  https://doi.org/10.1515/mammalia-2016-0045 CrossRefGoogle Scholar
  4. Apostolico F, Vercillo F, La Porta G, Ragni B (2016) Long-term changes in diet and trophic niche of the European wildcat (Felis silvestris silvestris) in Italy. Mammal Res 61:109–119.  https://doi.org/10.1007/s13364-015-0255-8 CrossRefGoogle Scholar
  5. Ashley NT, Barboza PS, Macbeth BJ, Janz DM, Cattet MRL, Both RK, Wasser SK (2011) Glucocorticosteroid concentrations in feces and hair of captive caribou and reindeer following adrenocorticotropic hormone challenge. Gen Comp Endocrinol 172:382–391.  https://doi.org/10.1016/j.ygcen.2011.03.029 CrossRefPubMedGoogle Scholar
  6. Balíková M (2005) Hair analysis for drugs of abuse. Plausibility of interpretation. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 149:199–207.  https://doi.org/10.5507/bp.2005.026 CrossRefPubMedGoogle Scholar
  7. Ballesteros-Duperón E, Virgós E, Moleón M, Barea-Azcón JM, Gil-Sánchez JM (2015) How accurate are coat traits for discriminating wild and hybrid forms of Felis silvestris? Mammalia 79:101–110.  https://doi.org/10.1515/mammalia-2013-0026 CrossRefGoogle Scholar
  8. Barja I, Silván G, Rosellini S, Piñeiro A, González-Gil A, Camacho L, Illera JC (2007) Stress physiological responses to tourist pressure in a wild population of European pine marten. J Steroid Biochem Mol Biol 104:136–142.  https://doi.org/10.1016/j.jsbmb.2007.03.008 CrossRefPubMedGoogle Scholar
  9. Bayazit V (2009) Evaluation of Cortisol and Stress in Captive Animal. 3:1022–1031. https://pdfs.semanticscholar.org/3f05/c6638addc7dcaa243cf74061969a9fca3854.pdf
  10. Bechshøft TØ, Sonne C, Dietz R, Born EW, Novak MA, Henchey E, Meyer JS (2011) Cortisol levels in hair of East Greenland polar bears. Sci Total Environ 409:831–834.  https://doi.org/10.1016/j.scitotenv.2010.10.047 CrossRefPubMedGoogle Scholar
  11. Bechshøft TØ, Rigét FF, Sonne C, Letcher RJ, Muir DCG, Novak MA, Henchey E, Meyer JS, Eulaers I, Jaspers VLB, Eens M, Covaci A, Dietz R (2012) Measuring environmental stress in East Greenland polar bears, 1892–1927 and 1988–2009: What does hair cortisol tell us? Environ Int 45:15–21.  https://doi.org/10.1016/j.envint.2012.04.005 CrossRefPubMedGoogle Scholar
  12. Bechshøft TØ, Derocher AE, Richardson E, Mislan P, Lunn NJ, Sonne C, Dietz R, Janz DM, St Louis VL (2015) Mercury and cortisol in Western Hudson Bay polar bear hair. Ecotoxicology 24:1315–1321.  https://doi.org/10.1007/s10646-015-1506-9 CrossRefPubMedGoogle Scholar
  13. Berger EM, Leus K, Vercammen P, Schwarzenberger F (2006) Faecal steroid metabolites for non-invasive assessment of reproduction in common warthogs (Phacochoerus africanus), red river hogs (Potamochoerus porcus) and babirusa (Babyrousa babyrussa). Anim Reprod Sci 91:155–171.  https://doi.org/10.1016/j.anireprosci.2005.03.009 CrossRefPubMedGoogle Scholar
  14. Boonstra R (2004) Coping with changing northern environments: the role of the stress axis in birds and mammals. Integr Comp Biol 44:95–108.  https://doi.org/10.1093/icb/44.2.95 CrossRefPubMedGoogle Scholar
  15. Brown JL, Wildt DE (1997) Assessing reproductive status in wild felids by non-invasive faecal steroid monitoring. Int Zoo Yh 35:173–191.  https://doi.org/10.1111/j.1748-1090.1997.tb01208.x CrossRefGoogle Scholar
  16. Bryan HM, Darimont CT, Paquet PC, Wynne-Edwards KE, Smits JEG (2014) Stress and reproductive hormones reflect inter-specific social and nutritional conditions mediated by resource availability in a bear-salmon system. Conserv Physiol 2:1–18.  https://doi.org/10.1093/conphys/cou010 CrossRefGoogle Scholar
  17. Burbonnais ML, Nelson TA, Cattet MR, Darimont CT, Stenhouse GB (2013) Spatial analysis of factors influencing long-term stress in the grizzly bear (Ursus arctos) population of Alberta, Canada. PLoS ONE 8(12):e83768.  https://doi.org/10.1371/journal.pone.0083768 CrossRefGoogle Scholar
  18. Carta della Natura del Friuli Venezia Giulia (2007). Retrieved 27 February 2019 from http://irdat.regione.fvg.it/WebGIS/
  19. Caslini C, Comin A, Peric T, Prandi A, Pedrotti L, Mattiello S (2016) Use of hair cortisol analysis for comparing population status in wild red deer (Cervus elaphus) living in areas with different characteristics. Eur J Wildl Res 62:713–723.  https://doi.org/10.1007/s10344-016-1049-2 CrossRefGoogle Scholar
  20. Cattet M, Macbeth BJ, Janz DM, Zedrosser A, Swenson JE, Dumond M, Stenhouse GB (2014) Quantifying long-term stress in brown bears with the hair cortisol concentration: a biomarker that may be confounded by rapid changes in response to capture and handling. Conserv Physiol 2:1–15.  https://doi.org/10.1093/conphys/cou026 CrossRefGoogle Scholar
  21. Cavigelli SA (1999) Behavioural patterns associated with faecal cortisol levels in free-ranging female ring-tailed lemurs, Lemur catta. Anim Behav 57:935–944.  https://doi.org/10.1006/anbe.1998.1054 CrossRefPubMedGoogle Scholar
  22. Comin A, Prandi A, Peric T, Corazzin M, Dovier S, Bovolenta S (2011) Hair cortisol levels in dairy cows from winter housing to summer highland grazing. Livest Sci 138:69–73.  https://doi.org/10.1016/j.livsci.2010.12.009 CrossRefGoogle Scholar
  23. Comin A, Peric T, Corazzin M, Veronesi MC, Meloni T, Zufferli V, Cornacchia G, Prandi A (2013) Hair cortisol as a marker of hypothalamic-pituitary-adrenal axis activation in Friesian dairy cows clinically or physiologically compromised. Livest Sci 152:36–41.  https://doi.org/10.1016/j.livsci.2012.11.021 CrossRefGoogle Scholar
  24. Comin A, Peric T, Magrin L, Corazzin M, Cornacchia G, Prandi A (2014) Study of progesterone and cortisol concentrations in the Italian Friesian claw. J Dairy Sci 97:5491–5496.  https://doi.org/10.3168/jds.2014-7943 CrossRefPubMedGoogle Scholar
  25. Creel S, Christianson D, Schuette P (2013) Glucocorticoid stress responses of lions in relationship to group composition, human land use, and proximity to people. Conserv Physiol 1:1–9.  https://doi.org/10.1093/conphys/cot021 CrossRefGoogle Scholar
  26. Dantzer B, McAdam AG, Palme R, Fletcher QE, Boutin S, Humphries MM, Boonstra R (2010) Fecal cortisol metabolite levels in free-ranging North American red squirrels: assay validation and the effects of reproductive condition. Gen Comp Endocrinol 167:279–286.  https://doi.org/10.1016/j.ygcen.2010.03.024 CrossRefPubMedGoogle Scholar
  27. Darlingtont DN, Chew G, Ha T, Keil LC, Dallman MF (1990) Corticosterone, but not glucose, treatment enables fasted adrenalectomized rats to survive moderate hemorrhage. Endocrinology 127(2):766–772.  https://doi.org/10.1210/endo-127-2-766 CrossRefGoogle Scholar
  28. Davenport MD, Tiefenbacher S, Lutz CK, Novak MA, Meyer JS (2006) Analysis of endogenous cortisol concentrations in the hair of rhesus macaques. Gen Comp Endocrinol 147:255–261.  https://doi.org/10.1016/j.ygcen.2006.01.005 CrossRefPubMedGoogle Scholar
  29. David M, Auclair Y, Cézilly F (2011) Personality predicts social dominance in female zebra finches, Taeniopygia guttata, in a feeding context. Anim Behav 81:219–224.  https://doi.org/10.1016/j.anbehav.2010.10.008 CrossRefGoogle Scholar
  30. Dehnhard M, Clauss M, Lechner-Doll M, Meyer HHD, Palme R (2001) Noninvasive monitoring of adrenocortical activity in roe deer (Capreolus capreolus) by measurement of fecal cortisol metabolites. Gen Comp Endocrinol 123:111–120.  https://doi.org/10.1006/gcen.2001.7656 CrossRefPubMedGoogle Scholar
  31. Deng H, Jin X, Hn D (2014) Fecal cortisol content of wild giant pandas (Ailuropoda melanoleuca) to monitor human disturbance level in natural habitats. 64:75–86. doi:  https://doi.org/10.1163/15707563-00002432 CrossRefGoogle Scholar
  32. Dingemanse NJ, Réale D (2005) Natural selection and animal personality. Behaviour 142:1159–1184.  https://doi.org/10.1163/156853905774539445 CrossRefGoogle Scholar
  33. Driscoll C, Nowell K (2010) Felis silvestris. The IUCN Red List of Threatened Species. Version 2014.2. http://www.iucnredlist.org/details/8543/0. Accessed 04 Nov 2019
  34. Fanson KW, Wielebnowski NC, Shenk TM, Lucas JR (2012) Comparative patterns of adrenal activity in captive and wild Canada lynx (Lynx canadensis). J Comp Physiol B 182:157–165.  https://doi.org/10.1007/s00360-011-0597-8 CrossRefPubMedGoogle Scholar
  35. Fourie NH, Turner TR, Brown JL, Pampush JD, Lorenz JG, Bernstein RM (2015) Variation in vervet (Chlorocebus aethiops) hair cortisol concentrations reflects ecological disturbance by humans. Primates 56:365–373.  https://doi.org/10.1007/s10329-015-0486-y CrossRefPubMedGoogle Scholar
  36. Gardiner KJ, Hall AJ (1997) Diel and annual variation in plasma cortisol concentrations among wild and captive harbor seals (Phoca vitulina). Can J Zool 75:1773–1780.  https://doi.org/10.1139/z97-806 CrossRefGoogle Scholar
  37. Goymann W (2005) Non-invasive monitoring of hormones in bird droppings physiological validation, sampling, extraction, sex differences, and the influence of diet on hormone metabolite levels. Ann NY Acad Sci 1046:35–53.  https://doi.org/10.1196/annals.1343.005 CrossRefPubMedGoogle Scholar
  38. Goymann W (2012) On the use of non-invasive hormone research in uncontrolled, natural environments: the problem with sex, diet, metabolic rate and the individual. Methods Ecol Evol 3(4):757–765.  https://doi.org/10.1111/j.2041-210X.2012.00203.x CrossRefGoogle Scholar
  39. Goymann W, Möstl E, Van’t Hof T, East ML, Hofer H (1999) Non-invasive fecal monitoring of glucocorticoids in spotted hyenas, Crocuta crocuta. Gen Comp Endocr 114:340–348.  https://doi.org/10.1006/gcen.1999.7268 CrossRefPubMedGoogle Scholar
  40. Graham L, Schwarzenberger F, Möstl E, Galama W (2001) A versatile enzyme immunoassay for the determination of progestogens in feces and serum. Zoo Biol 20:227–236.  https://doi.org/10.1002/zoo.1022 CrossRefGoogle Scholar
  41. Gygax L, Neuffer I, Kaufmann C, Hauser R, Wechsler B (2006) Milk cortisol concentration in automatic milking systems compared with auto-tandem milking parlors. J Dairy Sci 89:3447–3454.  https://doi.org/10.3168/jds.S0022-0302(06)72382-7 CrossRefPubMedGoogle Scholar
  42. Hajamor S, Despre J, Couillard C, Lemieux S, Tremblay A, Prud’homme D, Tchernof A (2003) Relationship between sex hormone–binding globulin levels and features of the metabolic syndrome. Metabolism 52(6):724–730.  https://doi.org/10.1016/S0026-0495(03)00066-0 CrossRefPubMedGoogle Scholar
  43. Hamilton LD, Rellini AH, Meston CM (2008) Cortisol, sexual arousal, and affect in response to sexual stimuli. J Sex Med 5:2111–2118.  https://doi.org/10.1111/j.1743-6109.2008.00922.x CrossRefPubMedPubMedCentralGoogle Scholar
  44. Heistermann M, Palme R, Ganswindt A (2006) Comparison of different enzyme immunoassays for assessment of adrenocortical activity in primates based on fecal analysis. Am J Primatol 68:257–273.  https://doi.org/10.1002/ajp CrossRefPubMedGoogle Scholar
  45. Huber S, Palme R, Arnold W (2003) Effects of season, sex, and sample collection on concentrations of fecal cortisol metabolites in red deer (Cervus elaphus). Gen Comp Endocrinol 130:48–54.  https://doi.org/10.1016/S0016-6480(02)00535-X CrossRefPubMedGoogle Scholar
  46. Janczak AM, Pedersen LJ, Bakken M (2003) Aggression, fearfulness and coping styles in female pigs. Appl Anim Behav Sci 81:13–28.  https://doi.org/10.1016/S0168-1591(02)00252-6 CrossRefGoogle Scholar
  47. Jȩdrzejewski W, Jȩdrzejewska B (1992) Foraging and diet of the red fox Vulpes vulpes in relation to variable food resources in Białowieża National Park, Poland. Ecography 15(2):212–220.  https://doi.org/10.1111/j.1600-0587.1992.tb00027.x CrossRefGoogle Scholar
  48. Keay JM, Singh J, Ph D, Gaunt MC (2006) Fecal glucocorticoids and their metabolites as indicators of stress in various mammalian species: a literature review. J Zoo Wildlife Med 37(3):234–244.  https://doi.org/10.1638/05-050.1 CrossRefGoogle Scholar
  49. Killshaw K (2011) Scottish wildcats. Scottish Natural Heritage Publishing, BattlebyGoogle Scholar
  50. Kintz P, Villain M, Cirimele V (2006) Hair analysis for drug detection. Ther Drug Monit 28:442–446.  https://doi.org/10.1097/01.ftd.0000211811.27558.b5 CrossRefPubMedGoogle Scholar
  51. Klar N, Fernández N, Kramer-Shadt S, Herrmann M, Trinzen M, Büttner I, Niemitz C (2008) Habitat selection models for European wildcat conservation. Biol Conserv 141:308–319.  https://doi.org/10.1016/j.biocon.2007.10.004 CrossRefGoogle Scholar
  52. Koolhaas JM, Korte SM, De Boer SF, Van Der Vegt BJ, Van Reenen CG, Hopster H, De Jong IC, Ruis MAW, Blokhuis HJ (1999) Coping styles in animal: current status in behavior and stress-physiology. Neurosci Biobehav Rev 23:925–935.  https://doi.org/10.1016/S0149-7634(99)00026-3 CrossRefPubMedGoogle Scholar
  53. Koren L, Mokady O, Karaskov T, Klein J, Koren G, Geffen E (2002) A novel method using hair for determining hormonal levels in wildlife. Anim Behav 63:403–406.  https://doi.org/10.1006/anbe.2001.1907 CrossRefGoogle Scholar
  54. Lafferty DJR, Laudenslager ML, Mowat G, Heard D, Belant JL (2015) Sex, diet, and the social environment: factors influencing hair cortisol concentration in free-ranging black bears (Ursus americanus). PLoS One 10(11):e0141489.  https://doi.org/10.1371/journal.pone.0141489 CrossRefPubMedPubMedCentralGoogle Scholar
  55. Lapini L (2006) Attuale Distribuzione del Gatto Selvatico Felis silvestris silvestris Schreber, 1775 nell’Italia Nord-Orientale (Mammalia: Felidae). Boll Mus Civ St Nat Venezia 57:221–234 https://www.researchgate.net/profile/Luca_Lapini2/publication/272096191_LAPINI_L_2006_A_Attuale_distribuzione_del_gatto_selvatico_Felis_silvestris_silvestris_SCHREBER_1775_nell'Italia_nordorientale_Mammalia_Felidae_Boll_Mus_civ_St_nat_Venezia_57_221-234/links/54db2b640cf2ba88a68f4f04.pdf
  56. Leboulenger F, Delarue C, Belanger A, Perroteau I, Netchitailo P, Leroux P, Jegou S, Tonon MC, Vaudry H (1982) Direct radioimmunoassays for plasma corticosterone and aldosterone in frog. I. Validation of the Methods and Evidence for Daily Rhythms in a Natural Environment. Gen Comp Endocr 46:521–532.  https://doi.org/10.1016/0016-6480(82)90108-3 CrossRefPubMedGoogle Scholar
  57. Lozano J (2010) Habitat use by European wildcats (Felis silvestris) in central Spain: what is the relative importance of forest variables? Anim Biodiv Conserv 33(2):143–150 https://www.raco.cat/index.php/ABC/article/view/214977/285491
  58. Lozano J, Malo AF (2012) Conservation of European wildcat (Felis silvestris) in Mediterranean environments: a reassessment of current threats. In: Williams GS (ed) Mediterranean ecosystems: dynamics, management and conservation. Nova Science Publishers, Hauppauge, NY, pp 1–31.Google Scholar
  59. Lozano J, Virgós E, Malo AF, Huertas DL, Casanovas JG (2003) Importance of scrub-pastureland mosaics for wildliving cats occurrence in a Mediterranean area: implications for the conservation of the wildcat (Felis silvestris). Biodiv Conserv 12:921–935.  https://doi.org/10.1023/A:1022821708594 CrossRefGoogle Scholar
  60. Lucherini M, Lovari S, Crema G (1995) Habitat use and ranging behaviour of the red fox Vulpes vulpes in a Mediterranean rural area: is shelter availability a key factor? J Zool 237:577–591.  https://doi.org/10.1111/j.1469-7998.1995.tb05016.x CrossRefGoogle Scholar
  61. Macbeth BJ, Cattet MRL, Stenhouse GB, Gibeau ML, Janz DM (2010) Hair cortisol concentration as a noninvasive measure of long-term stress in free-ranging grizzly bears (Ursus arctos): considerations with implications for other wildlife. Can J Zool 88:935–949.  https://doi.org/10.1139/Z10-057 CrossRefGoogle Scholar
  62. Mattucci F, Oliveira R, Bizzarri L, Vercillo F, Anile S, Ragni B, Lapini L, Sforzi A, Alves PC, Lyons LA, Randi E (2013) Genetic structure of wildcat (Felis silvestris) populations in Italy. Ecol Evol 3:2443–2458.  https://doi.org/10.1002/ece3.569 CrossRefGoogle Scholar
  63. Millspaugh JJ, Washburn BE, Milanick MA, Beringer J, Hansen LP, Meyer TM (2002) Non-invasive techniques for stress assessment in white-tailed deer. Source Wildl Soc Bull 30(3):899–907.  https://doi.org/10.2307/3784245 CrossRefGoogle Scholar
  64. Montiglio PO, Garant D, Pelletier F, Réale D (2012) Personality differences are related to long-term stress reactivity in a population of wild eastern chipmunks, Tamias striatus. Anim Behav 84:1071–1079.  https://doi.org/10.1016/j.anbehav.2012.08.010 CrossRefGoogle Scholar
  65. Mormède P, Andanson S, Aupérin B, Beerda B, Guémené D, Malmkvist J, Manteca X, Manteuffel G, Prunet P, van Reenen CG, Richard S, Vaissier I (2007) Exploration of the hypothalamic-pituitary-adrenal function as a tool to evaluate animal welfare. Physiol Behav 92:317–339.  https://doi.org/10.1016/j.physbeh.2006.12.003 CrossRefPubMedGoogle Scholar
  66. Möstl E, Palme R (2002) Hormones as indicators of stress. Domest Anim Endocrinol 23:67–74.  https://doi.org/10.1016/S0739-7240(02)00146-7 CrossRefPubMedGoogle Scholar
  67. Naidenko SV, Ivanov EA, Lukarevskii VS, Hernandez-Balnco JA, Sorokin PA, Litvinov MN, Kotlyar AK, Rozhnov VV (2011) Activity of the hypothalamic-pituitary-adrenal axis in the Siberian tiger (Panthera tigris altaica) in captivity and in the wild, and its dynamics throughout the year. Biol Bull Russ Acad Sci 38(3):301–305.  https://doi.org/10.1134/S1062359011030095 CrossRefGoogle Scholar
  68. Naidenko SV, Berezhnoi MA, Kumar V, Umapathy G (2019) Comparison of tigers’ fecal glucocorticoids level in two extreme habitats. PLoS ONE 14(4):e0214447.  https://doi.org/10.1371/journal.pone.0214447 CrossRefPubMedPubMedCentralGoogle Scholar
  69. Narayan EJ, Parnell T, Clark G, Martin-Vegue P, Mucci A, Hero JM (2013) Faecal cortisol metabolites in Bengal (Panthera tigris tigris) and Sumatran tigers (Panthera tigris sumatrae). Gen Comp Endocr 194:318–325.  https://doi.org/10.1016/j.ygcen.2013.10.002 CrossRefPubMedGoogle Scholar
  70. Natoli E (1994) Urban feral cats (Felis catus L.): perspectives for a demographic control respecting the psycho-biological welfare of the species. Ann 1st Super Sanità 30(2):223–227 https://www.researchgate.net/profile/Eugenia_Natoli/publication/15367635_Urban_feral_cats_Felis_catus_L_perspectives_for_a_demographic_control_respecting_the_psychobiological_welfare_of_the_species/links/55117cb20cf21209d528a8ae.pdf
  71. Natoli E, Say L, Cafazzo S, Bonanni R, Schmidt M, Pontier D (2005) Bold attitude makes male urban feral domestic cats more vulnerable to feline immunodeficiency virus. Neurosci Biobehav Rev 29:151–157.  https://doi.org/10.1016/j.neubiorev.2004.06.011 CrossRefPubMedGoogle Scholar
  72. Negrão JA, Porcionato MA, de Passillé AM, Rushen J (2004) Cortisol in saliva and plasma of cattle after ACTH administration and milking. J Dairy Sci 87:1713–1718.  https://doi.org/10.3168/jds.S0022-0302(04)73324-X CrossRefPubMedGoogle Scholar
  73. Official site of Friuli Venezia Giulia region - English Version (n.d.). Retrived 28 February 2019 from http://www.regione.fvg.it/inglese/pagine_interne/welcome_history.asp.
  74. Palme R (2005) Measuring fecal steroids: Guidelines for practical application. Ann N Y Acad Sci 1040:75–80.  https://doi.org/10.1196/annals.1343.007 CrossRefGoogle Scholar
  75. Palme R, Fisher P, Schildorfer H, Ismail MN (1996) Excretion of infused 14C-steroid hormones via faeces and urine in domestic livestock. Anim Reprod Sci 43:43–46.  https://doi.org/10.1016/0378-4320(95)01458-6 CrossRefGoogle Scholar
  76. Palme R, Touma C, Sachser N, Erich M (2003) Effects of sex and time of day on metabolism and excretion of corticosterone in urine and feces of mice. 130:267–278.  https://doi.org/10.1016/S0016-6480(02)00620-2 CrossRefGoogle Scholar
  77. Palme R, Rettenbacher S, Touma C, El-Bahr SM, Möstl E (2005) Comparative aspects regarding metabolism, excretion, and noninvasive measurement in faecal samples. Ann NY Acad Sci 1040:162–171.  https://doi.org/10.1196/annals.1327.021 CrossRefPubMedGoogle Scholar
  78. Peric T, Comin A, Corazzin M, Montillo M, Canavese F, Stebel M, Prandi A (2016) Relocation and hair cortisol concentrations in New Zealand white rabbits. J Appl Anim Welf Sci 20(1):1–8.  https://doi.org/10.1080/10888705.2016.1183489 CrossRefPubMedGoogle Scholar
  79. Peric T, Corazzin M, Romanzin A, Bovolenta S, Prandi A, Montillo M, Comin A (2017) Cortisol and DHEA concentrations in the hair of dairy cows managed indoor or on pasture. Livest Sci 202:39–43.  https://doi.org/10.1016/j.livsci.2017.05.020 CrossRefGoogle Scholar
  80. Peric T, Comin A, Corazzin M, Montillo M, Canavese F, Stebel M, Prandi A (2018) Hair cortisol concentrations in New Zealand white rabbits subjected to surgery. Anim Welfare 27:13–20.  https://doi.org/10.7120/09627286.27.1.013 CrossRefGoogle Scholar
  81. Piñeiro A, Bárja I, Silvn G, Illera JC (2012) Effects of tourist pressure and reproduction on physiological stress response in wildcats: management implications for species conservation. Wildl Res 39:532–539.  https://doi.org/10.1071/WR10218 CrossRefGoogle Scholar
  82. Piñeiro A, Barja I, Otero GP, Silván G, Illera JC (2015) No effects of habitat, prey abundance and competitor carnivore abundance on faecal cortisol metabolite levels in wildcats (Felis silvestris). Ann Zool Fennici 52:90–102.  https://doi.org/10.5735/086.052.0208 CrossRefGoogle Scholar
  83. Pragst F, Balikova MA (2006) State of the art in hair analysis for detection of drug and alcohol abuse. Clin Chim Acta 370:17–49.  https://doi.org/10.1016/j.cca.2006.02.019 CrossRefPubMedGoogle Scholar
  84. Prandi A, Peric T, Corazzin M, Comin A, Colitti M (2018) A first survey on hair cortisol of an Alpine ibex (Capra ibex ibex) population. Anim Sci Pap Rep 36(1):57–74 https://www.researchgate.net/publication/323705058_A_first_survey_on_hair_cortisol_of_an_alpine_ibex_Capra_ibex_ibex_population Google Scholar
  85. Ragni B, Possenti M (1996) Variability of coat-colour and markings system in Felis silvestris. Ital J Zool 63:285–292.  https://doi.org/10.1080/11250009609356146 CrossRefGoogle Scholar
  86. Rangel-Negrín A, Alfaro JL, Valdez RA, Romano MC, Serio-Silva JC (2009) Stress in Yucatan spider monkeys: effects of environmental conditions on fecal cortisol levels in wild and captive populations. Anim Conserv 12:496–502.  https://doi.org/10.1111/j.1469-1795.2009.00280.x CrossRefGoogle Scholar
  87. Rehbinder C, Hau J (2006) Quantification of cortisol, cortisol immunoreactive metabolites, and immunoglobulin A in serum, saliva, urine, and feces for non-invasive assessment of stress in reindeer. Can J Vet Res 70:151–154 https://www.researchgate.net/publication/7141019_Quantification_of_cortisol_cortisol_immunoreactive_metabolites_and_immunoglobulin_A_in_serum_saliva_urine_and_feces_for_noninvasive_assessment_of_stress_in_reindeer
  88. Romero LM (2002) Seasonal changes in plasma glucocorticoid concentrations in free-living vertebrates. Gen Comp Endocr 128:1–24.  https://doi.org/10.1016/S0016-6480(02)00064-3 CrossRefPubMedGoogle Scholar
  89. Romero LM (2004) Physiological stress in ecology: lessons from biomedical research. Trends Ecol Evol 19:249–255.  https://doi.org/10.1016/j.tree.2004.03.008 CrossRefPubMedGoogle Scholar
  90. Romero LM, Wingfield JC (2001) Regulation of the hypothalamic-pituitary-adrenal axis in free-living pigeons. J Comp Physiol B 171:231–235.  https://doi.org/10.1007/s003600000167 CrossRefGoogle Scholar
  91. Romero LM, Dickens MJ, Cyr NE (2009) Hormones and behavior the reactive scope model - a new model integrating homeostasis, allostasis, and stress. Horm Behav 55:375–389.  https://doi.org/10.1016/j.yhbeh.2008.12.009 CrossRefPubMedGoogle Scholar
  92. Roth TL, Brien JKO, Mcrae MA, Bellem AC, Romo SJ, Kroll JL, Brown JL (2001) Ultrasound and endocrine evaluation of the ovarian cycle and early pregnancy in the Sumatran rhinoceros, Dicerorhinus sumatrensis. Reproduction 121:139–149.  https://doi.org/10.1530/reprod/121.1.139 CrossRefPubMedGoogle Scholar
  93. Ruiz-Gomez MDL, Huntingford FA, Øverli Ø, Thörnqvist PO, Höglund E (2011) Response to environmental change in rainbow trout selected for divergent stress coping styles. Physiol Behav 102:317–322.  https://doi.org/10.1016/j.physbeh.2010.11.023 CrossRefGoogle Scholar
  94. Russell E, Koren G, Rieder M, Van Uum S (2012) Hair cortisol as a biological marker of chronic stress: current status, future directions and unanswered questions. Psychoneuroendocrinology 37:589–601.  https://doi.org/10.1016/j.psyneuen.2011.09.009 CrossRefPubMedGoogle Scholar
  95. Sapolsky RM, Romero LM, Munck AU (2000) How Do glucocorticoids influence stress responses? Preparative Actions. Endocr Rev 21:55–89.  https://doi.org/10.1210/er.21.1.55 CrossRefGoogle Scholar
  96. Sarmento P, Cruz J, Tarroso P, Fonseca C (2006) Space and habitat selection by female European wild cats (Felis silvestris silvestris). Wildl Biol Pract 2(2):79–89.  https://doi.org/10.2461/wbp.2006.2.10 CrossRefGoogle Scholar
  97. Schatz S, Palme R (2001) Measurement of faecal cortisol metabolites in cats and dogs: a non-invasive method for evaluating adrenocortical function. Vet Res Commun 25:271–287.  https://doi.org/10.1023/A:1010626608498 CrossRefPubMedGoogle Scholar
  98. Schell CJ, Young JK, Lonsdorf EV, Mateo JM, Santymire RM (2017) Investigation of techniques to measure cortisol and testosterone concentrations in coyote hair. Zoo Biol 36:220–225.  https://doi.org/10.1002/zoo.21359 CrossRefPubMedGoogle Scholar
  99. Schwarzenberger F (2007) The many uses of non-invasive faecal steroid monitoring in zoo and wildlife species. Int Zoo Yb 41:52–74.  https://doi.org/10.1111/j.1748-1090.2007.00017.x CrossRefGoogle Scholar
  100. Schwarzenberger F, Möstl E, Palme R (1996) Faecal steroid analysis for non-invasive monitor of reproductive status in farm, wild and zoo animals. Anim Reprod Sci 42:515–526  https://doi.org/10.1016/0378-4320(96)01561-8 CrossRefGoogle Scholar
  101. Schwarzenberger F, Palme R, Bamberg E, Möstl E (1997) A review of faecal progesterone metabolite analysis for non-invasive monitoring of reproductive function in mammals. Int J Mamm Biol 62:214–221 https://www.researchgate.net/publication/266084067_A_review_of_faecal_progesterone_metabolite_analysis_for_noninvasive_monitoring_of_reproductive_function_in_mammals
  102. Sheriff MJ, Dantzer B, Delehanty B, Palme R, Boonstra R (2011) Measuring stress in wildlife: techniques for quantifying glucocorticoids. Oecologia 166:869–887.  https://doi.org/10.1007/s00442-011-1943-y CrossRefPubMedGoogle Scholar
  103. Stradaioli G, Peric T, Montillo M, Comin A, Corazzin M, Veronesi MC, Prandi A (2017) Hair cortisol and testosterone concentrations and semen production of Bos taurus bulls. Ital J Anim Sci 16(4):631–639.  https://doi.org/10.1080/1828051X.2017.1303339 CrossRefGoogle Scholar
  104. von der Ohe CG, Servheen C (2002) Measuring stress in mammals using fecal glucocorticoids: opportunities and challenges. Wildlife Soc B 30(4):1215–1225 https://www.jstor.org/stable/pdf/3784291.pdf
  105. Webb E, Thomson S, Nelson A, White C, Koren G, Rieder M, Van Uum S (2010) Assessing individual systemic stress through cortisol analysis of archaeological hair. J Archaeol Sci 37:807–812.  https://doi.org/10.1016/j.jas.2009.11.010 CrossRefGoogle Scholar
  106. Weingrill T, Gray DA, Barrett L, Henzi SP (2004) Fecal cortisol levels in free-ranging female chacma baboons: relationship to dominance, reproductive state and environmental factors. Horm Behav 45:259–269.  https://doi.org/10.1016/j.yhbeh.2003.12.004 CrossRefPubMedGoogle Scholar
  107. Weisser JJ, Hansen M, Björklund E, Sonne C, Dietz R, Styrishave B (2016) A novel method for analysing key corticosteroids in polar bear (Ursus maritimus) hair using liquid chromatography tandem massspectrometry. J Chromatogr B 1017–1018:45–51.  https://doi.org/10.1016/j.jchromb.2016.02.029 CrossRefGoogle Scholar
  108. Wielebnowski N, Watters J (2007) Applying faecal endocrine monitoring to conservation and behavior studies of wild mammals: important considerations and preliminary tests. Isr J Ecol Evol 53:439–460.  https://doi.org/10.1560/IJEE.53.3.439 CrossRefGoogle Scholar
  109. Wikelski M, Cooke SJ (2006) Conservation physiology. Trends Ecol Evol 21:38–46.  https://doi.org/10.1016/j.tree.2005.10.018 CrossRefPubMedGoogle Scholar
  110. Yamaguchi N, Kitchener A, Driscoll C, Nussberger B (2015) Felis silvestris. IUCN Red List Threat Species 2015 8235:e.T60354712A50652361.  https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T60354712A50652361.en
  111. Young KM, Walker SL, Lanthier C, Waddell WT, Monfort SL, Brown JL (2004) Noninvasive monitoring of adrenocortical activity in carnivores by fecal glucocorticoid analysis. Gen Comp Endocrinol 137:148–165.  https://doi.org/10.1016/j.ygcen.2004.02.016 CrossRefPubMedGoogle Scholar
  112. Ziegler TE, Snowdon CT (1995) The relationship of cortisol levels to social environment and reproductive functioning in female cotton-top tamarins, Saguinus oedipus. Horm Behav 29:407–424.  https://doi.org/10.1006/hbeh.1995.1028 CrossRefPubMedGoogle Scholar
  113. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. Springer, New YorkCrossRefGoogle Scholar
  114. Zwijacz-Kozica T, Selva N, Barja I, Silván G, Martínez-Fernández L, Illera JC, Jodlowski M (2012) Concentration of faecal cortisol metabolites in chamois in relation to tourist pressure in Tatra National Park (South Poland). Acta Theriol 58(2):215–222.  https://doi.org/10.1007/s13364-012-0108-7 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Dipartimento di Scienze Agroalimentari, Ambientali e AnimaliUdineItaly
  2. 2.Dipartimento di BiologiaPaduaItaly

Personalised recommendations