Advertisement

Are Western European ospreys (Pandion haliaetus) shortening their migration distances? Evidence from trends of the wintering population in the Iberian Peninsula

  • Beatriz MartínEmail author
  • Carlos A. Torralvo
  • Gonçalo Elias
  • João Tomás
  • Alejandro Onrubia
  • Miguel Ferrer
Original Article

Abstract

Here, we provide evidence that the number of Western European ospreys wintering in the Iberian Peninsula has been increasing over nearly two decades due to a reduction of the migration distances. We compared trends in wintering and breeding populations of ospreys in the Iberian Peninsula and western Europe, respectively, and we provide a detailed description of the present distribution and the numbers of ospreys wintering in the Iberian Peninsula. Observations of the species were collected as a citizen science project in January 2017. Based on the long-term data series from the Andalusian region (2004–2016) and from the Bay of Cadiz site (2000–2016), we estimated temporal trends in the population size of the ospreys wintering in these areas. Trends in the western European breeding population were derived from counts of ospreys migrating over the Strait of Gibraltar conducted by volunteers (1999–2016). All the trends were estimated by fitting a linear regression to the logarithm of the annual counts. For quantifying the origin of ospreys wintering in the Iberian Peninsula, we collected 204 confirmed field sightings of wintering ospreys in Spain and 155 in Portugal. We showed that the number of wintering ospreys has been increasing in southern Spain over the last 16 years. The magnitude of this increase is similar to the rate of change observed in the ospreys breeding across Western Europe. Recoveries of ringed birds in the Iberian Peninsula during winter indicate a reduction in the migration distances of Central and Northern European ospreys, making these birds winter at higher latitudes more than before. According to our results, this reduction in the migration distance was fairly uniform among different breeding populations in western Europe, but it did not affect all age classes equally, with juvenile birds more prone to winter at higher latitudes compared to adult birds. Our results showed that the overall number of ospreys which are shortening their migration distance, now over 3% of the total breeding population estimated for western Europe, is on an upward trend.

Keywords

Citizen science Long-distance migrant Mediterranean Basin Monitoring Raptor Osprey Pandion haliaetus 

Notes

Acknowledgements

We are grateful to the volunteers and collaborators who collected the information presented in this study (Fundación Migres et al. 2017; Migres programme 1999–2016) as well as to the Board of the Migres Foundation. We are also grateful to the Spanish Ornithological Society (SEO) which made the recovery data available and to the many ringers and ringing scheme staff who have gathered and prepared the data. Special thanks to Andrew Paterson for his kind revision of the language of the manuscript. Finally, we would like to thank the editor and two anonymous referees for providing us with comments and suggestions that greatly help to improve the manuscript.

Supplementary material

10344_2019_1311_MOESM1_ESM.docx (2.6 mb)
ESM 1 (DOCX 2635 kb)

References

  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov B, Caski F (eds) Proceedings of the second international symposium on information theory. Akademiaiai Kiado, Budapest, pp 267–281Google Scholar
  2. Alerstam T, Hake M, Kjellén N (2006) Temporal and spatial patterns of repeated migratory journeys by ospreys. Anim Behav 71:555–566.  https://doi.org/10.1016/j.anbehav.2005.05.016 CrossRefGoogle Scholar
  3. Bai ML, Schmidt D (2012) Differential migration by age and sex in central European ospreys Pandion haliaetus. J Ornithol 153:75–84.  https://doi.org/10.1007/s10336-011-0697-y CrossRefGoogle Scholar
  4. Bernis F (1980) La Migración de las aves en el Estrecho de Gibraltar (Época Posnupcial). In: Aves Planeadoras, vol 1. Universidad Complutense, MadridGoogle Scholar
  5. Bibby C, Burgess ND, Hill DA (1992) Bird census techniques. Academic Press, London, p 257Google Scholar
  6. Bierregaard RO, Poole AF, Washburn BE (2014) Ospreys (Pandion haliaetus) in the 21st century: populations, migration, management, and research priorities. In:  https://doi.org/10.3356/0892-1016-48.4.301. http://www.bioone.org/doi/abs/10.3356/0892-1016-48.4.301. Accessed 11 Dec 2017CrossRefGoogle Scholar
  7. Bierregaard RO, Poole AF, Martell MS, Pyle P, Patten MA (2016) Osprey (Pandion haliaetus), version 2.0. In: Rodewald PG (ed) The birds of North America. Cornell Lab of Ornithology, Ithaca, NY, USA.  https://doi.org/10.2173/bna.683 CrossRefGoogle Scholar
  8. Bird D, Varland D, Alonso J (1996) Raptors in human landscapes. Academic PressGoogle Scholar
  9. BirdLife International (2015) European red list of birds. Office for Official Publications of the European Communities, LuxembourgGoogle Scholar
  10. BirdLife International (2017) Species factsheet: Pandion haliaetus. Downloaded from http://www.birdlife.org on 24/07/2017
  11. Blanco G, Rodriguez-Estrella R (1999) Reduced sexual plumage dimorphism in ospreys from Baja California Sur, México. Ibis 141:502–504.  https://doi.org/10.1111/j.1474-919X.1999.tb04422.x CrossRefGoogle Scholar
  12. Box GEP, Jenkins GM, Reinsel GC (2008) Time series analysis: forecasting and control, 4th edn. John Wiley & Sons, Upper Saddle River, NJCrossRefGoogle Scholar
  13. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer New York, New YorkGoogle Scholar
  14. Cabral MJ, Almeida J, Almeida PR et al (2005) Livro Vermelho dos Vertebrados de Portugal Peixes Dulciaquícolas e Migradores, Anfíbios, Répteis, Aves e Mamíferos. Instituto da Conservação da Natureza, LisboaGoogle Scholar
  15. Casado E (1999) Viabilidad de la reintroducción del Aguila Pescadora (Pandion haliaetus) en costas, estuarios y pantanos de Andalucía. Technical report. Estación Biológica de Doñana (CSIC), SevillaGoogle Scholar
  16. Casado E, Ferrer M (2005) Analysis of reservoir selection by wintering ospreys (Pandion haliaetus haliaetus) in Andalusia, Spain: a potential tool for reintroduction. J Raptor Res 39:168–173Google Scholar
  17. Catry P, Costa H, Elias G, Matias R (2010) Aves de Portugal—Ornitologia do território continental. Assírio & Alvim, LisboaGoogle Scholar
  18. CMAOT (2016) Programa de Emergencias, Control Epidemiológico y Seguimiento de Fauna Silvestre. In: Invernada de aves acuáticas en Andalucía 2015. Consejería de Medio Ambiente y Ordenación del Territorio, Junta de AndalucíaGoogle Scholar
  19. Cramp S, Simmons KEL (eds) (1980) The birds of the Western Palearctic, vol Vol. II. Oxford University Press, OxfordGoogle Scholar
  20. Cristol D, Baker M, Carbone C (1999) Differential migration revisited. Latitudinal segregation by age and sex class. In: Nolan V, Ketterson E, Thompson C (eds) Current ornithology. Plenum Publishers, New York, pp 33–88CrossRefGoogle Scholar
  21. De la Cruz A, Onrubia A, Pérez B et al (2011) Seguimiento de la migración de las aves en el estrecho de Gibraltar: Resultados del Programa Migres 2009. Migres Revista de Ecología 2:65–78Google Scholar
  22. Dennis R (2008) A life of ospreys. Whittles Publishing, DunbeathGoogle Scholar
  23. Dennis R (2016) Plan for the recovery and conservation of ospreys in Europe and the Mediterranean region in particular. In: 36th meeting Strasbourg, 15–18 November 2016. Standing Committee, StrasbourgGoogle Scholar
  24. Domínguez J (1990) Distribution of estuarine waders wintering in the Iberian Peninsula en 1978-1982. Wader Stud Group Bull 59:25–28Google Scholar
  25. Dunn EH, Hussell DJT (2009) Steps for basic analysis of daily migration counts, using multiple regression. Version 2009Google Scholar
  26. Equipa Atlas (2008) Atlas das aves nidificantes em Portugal (1999–2005). Instituto de Conservação da Natureza e da Biodiversidade, Sociedade Portuguesa para o Estudo das Aves, Parque Natural da Madeira e Secretaria Regional do Ambiente e do Mar, Assírio e Alvim, LisboaGoogle Scholar
  27. Farmer CJ, Hussell DJT (2008) The raptor population index in practice, pp 165–178Google Scholar
  28. Ferguson-Lees IJ (1963) Changes in the status of birds of prey in Europe. Br Birds 56:140–148Google Scholar
  29. Ferrer M, Casado E (2014) Manuales de Desarrollo Sostenible. 14. Reintroducción del águila pescadora. Fundación Banco SantanderGoogle Scholar
  30. Fuentes C, Muñoz del Viejo A, Ruiz de la Concha JI (1998) Distribución espacio-temporal y selección de hábitat del Águila pescadora Pandion haliaetus en las zonas húmedas de la cuenca media del Guadiana. In: Chancellor R, Meyburg B-U, Ferrero JJ (eds) Holarctic birds of prey. ADENEX-WWGBP, WWGP, Berlin, Germany, pp 329–338Google Scholar
  31. Fundación Migres, Amigos del águila pescadora, Aves de Portugal (2017) Inveranda del águila pescadora en la península Ibérica. El Corzo Bol Soc Gad Hist Nat 5:108–116Google Scholar
  32. Galarza A (2019) Primeros éxitos de la suelta de águilas pescadoras en Urdaibai. Quercus 395:56–57Google Scholar
  33. Gil JM, Valenzuela G (1997) El águila pescadora en aguas interiores de Granada. Quercus 138:16–18Google Scholar
  34. Glutz von Blotzheim ÜN, Bauer KM, Bezzel E (1971) Handbuch der Vögel Mitteleuropas 4. Frankfurt, p 629Google Scholar
  35. Gouraguine A, Moranta J, Ruiz-Frau A, Hinz H, Reñones O, Ferse SCA, Jompa J, Smith DJ (2019) Citizen science in data and resource-limited areas: a tool to detect long-term ecosystem changes. PLoS One 14:e0210007.  https://doi.org/10.1371/journal.pone.0210007 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Hake M, Kjellén N, Alerstam T (2001) Satellite tracking of Swedish ospreys Pandion haliaetus: autumn migration routes and orientation. J Avian Biol 32:47–56.  https://doi.org/10.1034/j.1600-048X.2001.320107.x CrossRefGoogle Scholar
  37. Irwin A (2018) No PhDs needed: how citizen science is transforming research. Nature 562:480–482CrossRefGoogle Scholar
  38. Janss G, Ferrer M (1999) Mitigation of raptor electrocution on steel power poles. Wildl Soc Bull 27:263–273Google Scholar
  39. Jiménez JJ, de las Heras M (2015) Invernada del águila pescadora (Pandion haliaetus) en la provincia de Cádiz. SGHN 5:40–48Google Scholar
  40. Klaassen RHG, Hake M, Strandberg R, Koks BJ, Trierweiler C, Exo KM, Bairlein F, Alerstam T (2014) When and where does mortality occur in migratory birds? Direct evidence from long-term satellite tracking of raptors. J Anim Ecol 83:176–184.  https://doi.org/10.1111/1365-2656.12135 CrossRefPubMedGoogle Scholar
  41. La Sorte FA, Thompson FR (2007) Poleward shifts in winter ranges of North American birds. Ecology 88:1803–1812CrossRefGoogle Scholar
  42. Lensink R (1997) Range expansion of raptors in Britain and the Netherlands since the 1960s: testing an individual-based diffusion model. J Anim Ecol 66:811–826.  https://doi.org/10.2307/5997 CrossRefGoogle Scholar
  43. Link WA, Sauer JR (1997) Estimation of population trajectories from count data. Biometrics 53:488–497CrossRefGoogle Scholar
  44. Mancini M, Haro G, Bucco C, Salinas V, Miquelarena A (2009) Composition and diversity of icthyofauna in la Viña reservoir (Córdoba, Argentina). Braz J Biol 69:49–55CrossRefGoogle Scholar
  45. Martin J, Kitchens W, Hines J (2007) Importance of well-designed monitoring programs for the conservation of endangered species: case study of the snail kiteGoogle Scholar
  46. Martín B, Onrubia A, Ferrer M (2014) Effects of climate change on the migration behavior of the common buzzard (Buteo buteo). Clim Res.  https://doi.org/10.3354/cr01233 CrossRefGoogle Scholar
  47. Martín B, Onrubia A, Ferrer M (2016a) Migration timing responses to climate change differ between adult and juvenile white storks across Western Europe. Clim Res 69:9–23CrossRefGoogle Scholar
  48. Martín B, Onrubia A, de la Cruz A, Ferrer M (2016b) Trends of autumn counts at Iberian migration bottlenecks as a tool for monitoring continental populations of soaring birds in Europe. Biodivers Conserv 25:295–309.  https://doi.org/10.1007/s10531-016-1047-4 CrossRefGoogle Scholar
  49. Monti F (2015) Scale-dependent approaches in conservation biogeography of a cosmopolitan raptor: the osprey. University of Ferrara/University of Montpellier, Ferrara/Montpellier, FranceGoogle Scholar
  50. Monti F, Dominici JM, Choquet R, Duriez O, Sammuri G, Sforzi A (2014) The osprey reintroduction in Central Italy: dispersal, survival and first breeding data. Bird Study 61:465–473CrossRefGoogle Scholar
  51. Monti F, Grémillet D, Sforzi A, Sammuri G, Dominici JM, Triay Bagur R, Muñoz Navarro A, Fusani L, Duriez O (2018) Migration and wintering strategies in vulnerable Mediterranean osprey populations. Ibis 160:554–567CrossRefGoogle Scholar
  52. Moreno-Opo J (2012) Águila pescadora (Pandion haliaetus). In: SEO/Birdlife (ed) Atlas de las aves en invierno en España 2007–2010. Ministerio de Agricultura, Alimentación y Medio Ambiente-SEO/BirdLife, Madrid, pp 192–193Google Scholar
  53. Muriel R, Ferrer M, Casado E, Calabuig CP (2010) First successful breeding of reintroduced ospreys Pandion haliaetus in mainland Spain. Ardeola 57:175–180Google Scholar
  54. Newton I (1979) Population ecology of raptors. Poyser Monographs, LondonGoogle Scholar
  55. Österlöf S (1977) Migration, wintering areas and site tenacity of the European osprey, Pandion haliaetus haliaetus (L.). Ornis Scand 8:60–78CrossRefGoogle Scholar
  56. Palma L, Safara J, Dias A et al (2019) The Portugese osprey reintroduction project: achievements, lessons and perspectives. Raptors Conservation 38:23–42CrossRefGoogle Scholar
  57. Pinheiro J, Bates D, DebRoy S et al (2017) nlme: linear and nonlinear mixed effects models. In: R package version 3, pp 1–131 https://CRAN.R-project.org/package=nlme. Accessed 21 Sept 2018Google Scholar
  58. Poole A (1982) Brood reduction in temperate and subtropical ospreys. Oecologia 53:111–119CrossRefGoogle Scholar
  59. Poole AF (1989) Ospreys. A natural and unnatural history. Cambridge University Press, CambridgeGoogle Scholar
  60. Poole AF, Kirwan GM, Christie DA, Marks JS (2017) Osprey (Pandion haliaetus). In: Del Hoyo J, Elliot A, Sargatal J, et al. (eds) Handbook of the birds of the world alive. (retrieved from http://www.hbw.com/node/52947 on 24 July 2017). Lynx Edicions, Barcelona
  61. Porter R, Beaman M (1985) A resume of raptor migration in Europe and the Middle East. ICBP Technical Publ 5:237–242Google Scholar
  62. Sanz T (1997) Migración e invernada del águila pescadora en España. Quercus 139:14–15Google Scholar
  63. Saurola P (2002) Satelliitit sauraavat sääksiämme. Linnut-vuosikirja 2002Google Scholar
  64. Sayago JM (2011) Monitoring wintering population of osprey (Pandion haliatus) in the province of Huelva (1996–2009). In: Zuberogoitia I, Martínez JE (eds) Ecology and conservation of European forest-dwelling raptors. Diputación Foral de Bizkaia, Bilbao, pp 298–301Google Scholar
  65. Schmidt D (1998) Osprey Pandion haliaetus breeding numbers in the Western Palearctic. In: Chancellor RD, Meyburg B-U, Ferrero JJ (eds) Proceedings international conference. Badajoz, pp 323–327Google Scholar
  66. Schmidt-Rothmund D, Dennis R, Saurola P (2014) The osprey in the Western Palearctic: breeding population size and trends in the early 21st century. J Raptor Res 48:375–386.  https://doi.org/10.3356/JRR-13-OSPR-13-03.1 CrossRefGoogle Scholar
  67. Scholer MN, Martín B, Ferrer M, Onrubia A, Bechard MJ, Kaltenecker GS, Carlisle JD (2016) Variable shifts in the autumn migration phenology of soaring birds in southern Spain. Ardea 104:83–93.  https://doi.org/10.5253/arde.v104i1.a CrossRefGoogle Scholar
  68. SEO/BirdLife (2012) Análisis preliminar del banco de datos de anillamiento de aves del Ministerio de Agricultura, Alimentación y Medio Ambiente, para la realización de un atlas de migración de aves de España. SEO/BirdLife-Fundación Biodiversidad, MadridGoogle Scholar
  69. Thibault JC, Bretagnolle V (2001) Monitoring, research and conservation of osprey Pandion haliaetus on Corsica, Mediterranean, France. Vogelwelt 122:173–178Google Scholar
  70. Triay R, Siverio M (2008) El águila pescadora en España. Población en 2008 y método de censo. SEO/BirdLife, MadridGoogle Scholar
  71. Visser ME, Perdeck AC, Van Balen JH, Both C (2009) Climate change leads to decreasing bird migration distances. Glob Chang Biol 15:1859–1865.  https://doi.org/10.1111/j.1365-2486.2009.01865.x CrossRefGoogle Scholar
  72. Wahl R, Barbraud C (2013) The demography of a newly established osprey Pandion haliaetus population in France. Ibis.  https://doi.org/10.1111/ibi.12114 CrossRefGoogle Scholar
  73. Wood E, Kellerman J (2015) Phenological synchrony and bird migration: changing climate and seasonal resources in North America. CRC Press, Boca RatonCrossRefGoogle Scholar
  74. Zwarts L, Bijlsma RG, van der Kamp J, Wymenga E (2009) Living on the edge: wetlands and birds in a changing Sahel. KNNV Publishing, Zeist, The NetherlandsGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Beatriz Martín
    • 1
    Email author
  • Carlos A. Torralvo
    • 1
  • Gonçalo Elias
    • 2
  • João Tomás
    • 2
  • Alejandro Onrubia
    • 1
  • Miguel Ferrer
    • 3
  1. 1.Fundación Migres, CIMATarifaSpain
  2. 2.Aves de PortugalLisbonPortugal
  3. 3.Applied Ecology GroupDoñana Biological Station, CSICSevilleSpain

Personalised recommendations