Advertisement

Effectiveness of a calf-selective feeder in preventing wild boar access

  • Ana BalseiroEmail author
  • Álvaro Oleaga
  • Luis Miguel Álvarez Morales
  • Pablo González Quirós
  • Christian Gortázar
  • José Miguel Prieto
Methods Paper

Abstract

Tuberculosis (TB) transmission between wildlife and domestic animals is usually indirect when they share an interface or visit the same location at different times in order to use the same food and water resources. Preventing aggregation and subsequent contact between domestic and wild animals is a valuable and cheap tool for improving farm biosafety. This study was carried out in a beef cattle farm located in Asturias (Atlantic Spain). Wild boar (Sus scrofa) visited the farm facilities every night to feed in the farm’s calf feeders. Our aim was to design and test the efficacy of a selective feeder for calves that could hinder its use by wild boar. We analyzed the effectiveness of the design using camera trapping. Pictures showed a reduction of 97.8% and 56.3% in the number of wild boar accessing to the selective feeder and in the number of wild boar “around” it, respectively. Those data demonstrate that the selective feeder hindered the access of wild boar to the feed and therefore, reduced the feed-mediated indirect interspecies contacts. Biosecurity measures are promising, cheap, and cost-effective tools for preventing TB and other diseases.

Keywords

Cattle Wild boar Selective feeder Indirect contact Tuberculosis 

Notes

Acknowledgments

Authors thank the farmer Ángel Merino and Jose Palomo (Eganor S.L.) for their invaluable collaboration. The manuscript has been critically reviewed by Dr. Kevin P. Dalton.

Funding information

This study was funded by INIA RTA2014-00002-C02-01 (co-funded by FEDER) and the Principado de Asturias, PCTI 2018–2020 (GRUPIN: IDI2018-000237 and FEDER).

References

  1. Barasona JA, VerCauteren KC, Saklou N, Gortazar C, Vicente J (2013) Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Prev Vet Med 111:42–50.  https://doi.org/10.1016/j.prevetmed.2013.03.009 CrossRefPubMedGoogle Scholar
  2. Barasona JA, Vicente J, Díez-Delgado I, Aznar J, Gortázar C, Torres MJ (2017a) Environmental presence of Mycobacterium tuberculosis complex in aggregation points at the wildlife/livestock Interface. Transbound Emerg Dis 64:1148–1158.  https://doi.org/10.1111/tbed.12480 CrossRefPubMedGoogle Scholar
  3. Barasona JA, Torres MJ, Aznar J, Gortázar C, Vicente J (2017b) DNA detection reveals Mycobacterium tuberculosis complex shedding routes in its wildlife reservoir the Eurasian wild boar. Transbound Emerg Dis 64:906–915.  https://doi.org/10.1111/tbed.12458 CrossRefPubMedGoogle Scholar
  4. Becker DJ, Hall RJ, Forbes KM, Plowright RK, Altizer S (2018) Anthropogenic resource subsidies and host-parasite dynamics in wildlife. Philos Trans R Soc Lond Ser B Biol Sci 373:20170086.  https://doi.org/10.1098/rstb.2017.0086 CrossRefGoogle Scholar
  5. Castillo-Contreras R, Carvalho J, Serrano E, Mentaberre G, Fernández-Aguilar X, Colom A, González-Crespo C, Lavín S, López-Olvera JR (2018) Urban wild boars prefer fragmented areas with food resources near natural corridors. Sci Total Environ 615:282–288.  https://doi.org/10.1016/j.scitotenv.2017.09.277 CrossRefPubMedGoogle Scholar
  6. Cowie CE, Hutchings MR, Barasona JA, Gortázar C, Vicente J, White PCL (2016) Interactions between four species in a complex wildlife: livestock disease community: implications for Mycobacterium bovis maintenance and transmission. Eur J Wildl Res 62:51–64.  https://doi.org/10.1007/s10344-015-0973-x CrossRefGoogle Scholar
  7. Fine AE, Bolin CA, Gardiner JC, Kaneene JB (2011) A study of the persistence of Mycobacterium bovis in the environment under natural weather conditions in Michigan, USA. Vet Med Int 2011:765430.  https://doi.org/10.4061/2011/765430 CrossRefPubMedPubMedCentralGoogle Scholar
  8. González-Crespo C, Serrano E, Cahill S, Castillo-Contreras R, Cabañeros L, López-Martín JM, Roldán J, Lavín S, López-Olvera JR (2018) Stochastic assessment of management strategies for a Mediterranean peri-urban wild boar population. PLoS One 13:e0202289.  https://doi.org/10.1371/journal.pone.0202289 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Gortázar C, Delahay RJ, McDonald RA, Boadella M, Wilson GJ, Gavier-Widen D, Acevedo P (2012) The status of tuberculosis in European wild mammals. Mammal Rev 42:193–206.  https://doi.org/10.1111/j.1365-2907.2011.00191.x CrossRefGoogle Scholar
  10. Jenkins HE, Morrison WI, Cox DR, Donnelly CA, Johnston WT, Bourne FJ, Clifton-Hadley RS, Gettinby G, McInerney JP, Watkins GH, Woodroffe R (2008) The prevalence, distribution and severity of detectable pathological lesions in badgers naturally infected with Mycobacterium bovis. Epidemiol Infect 136:1350–1361CrossRefGoogle Scholar
  11. Kuiken T, Leighton FA, Fouchier RA, LeDuc JW, Peiris JS, Schudel A, Stöhr K, Osterhaus AD (2005) Public health. Pathogen surveillance in animals. Science 309:1680–1681.  https://doi.org/10.1126/science.1113310 CrossRefPubMedGoogle Scholar
  12. Kukielka E, Barasona JA, Cowie CE, Drewe JA, Gortázar C, Cotarelo I, Vicente J (2013) Spatial and temporal interactions between livestock and wildlife in south Central Spain assessed by camera traps. Prev Vet Med 112:213–221.  https://doi.org/10.1016/j.prevetmed.2013.08.008 CrossRefPubMedGoogle Scholar
  13. MAPA 2018. Available at: https://www.mapama.gob.es/. Accessed 1 March 2019
  14. Martin C, Pastoret PP, Brochier B, Humblet MF, Saegerman C (2011) A survey of the transmission of infectious diseases/infections between wild and domestic ungulates in Europe. Vet Res 42:70.  https://doi.org/10.1186/1297-9716-42-70 CrossRefPubMedPubMedCentralGoogle Scholar
  15. Mentaberre G, Romero B, de Juan L, Navarro-Gonzalez N, Velarde R, Mateos A, Marco I, Olivé-Boix X, Domínguez L, Lavín S, Serrano E (2014) Long-term assessment of wild boar harvesting and cattle removal for bovine tuberculosis control in free ranging populations. PLoS One 9:e88824.  https://doi.org/10.1371/journal.pone.0088824 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Muñoz-Mendoza M, Marreros N, Boadella M, Gortázar C, Menéndez S, de Juan L, Bezos J, Romero B, Copano MF, Amado J, Sáez JL, Mourelo J, Balseiro A (2013) Wild boar tuberculosis in Iberian Atlantic Spain: a different picture from Mediterranean habitats. BMC Vet Res 9:176.  https://doi.org/10.1186/1746-6148-9-176 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Murphy D, Gormley E, Costello E, O’Meara D, Corner LA (2010) The prevalence and distribution of Mycobacterium bovis infection in European badgers (Meles meles) as determined by enhanced post mortem examination and bacteriological culture. Res Vet Sci 88:1–5.  https://doi.org/10.1016/j.rvsc.2009.05.020 CrossRefPubMedGoogle Scholar
  18. Olea-Popelka F, Muwonge A, Perera A, Dean AS, Mumford E, Erlacher-Vindel E, Forcella S, Silk BJ, Ditiu L, El Idrissi A, Raviglione M, Cosivi O, LoBue P, Fujiwara PI (2017) Zoonotic tuberculosis in human beings caused by Mycobacterium bovis-a call for action. Lancet Infect Dis 17:e21–e25.  https://doi.org/10.1016/S1473-3099(16)30139-6 CrossRefPubMedGoogle Scholar
  19. Quirós-Fernández F, Marcos J, Acevedo P, Gortázar C (2017) Hunters serving the ecosystem: the contribution of recreational hunting to wild boar population control. Eur J Wildl Res 63:57.  https://doi.org/10.1007/s10344-017-1107-4 CrossRefGoogle Scholar
  20. Ribeiro-Lima J, Carstensen M, Cornicelli L, Forester JD, Wells SJ (2017) Patterns of cattle farm visitation by white-tailed deer in relation to risk of disease transmission in a previously infected area with bovine tuberculosis in Minnesota, USA. Transbound Emerg Dis 64:1519–1529.  https://doi.org/10.1111/tbed.12544 CrossRefPubMedGoogle Scholar
  21. Rodríguez-Campos S, González S, de Juan L, Romero B, Bezos J, Casal C, Álvarez J, Fernández de Mera IG, Castellanos E, Mateos A, Sáez-Llorente JL, Domínguez L, Aranaz A, and Spanish Network on Surveillance Monitoring of Animal Tuberculosis (2012) A database for animal tuberculosis (mycoDB.es) within the context of the Spanish national programme for eradication of bovine tuberculosis. Infect Genet Evol 12:877–882CrossRefGoogle Scholar
  22. Rodríguez-Hernández E, Pizano-Martínez OE, Canto-Alarcón G, Flores-Villalva S, Quintas-Granados LI, Milián-Suazo F (2016) Persistence of Mycobacterium bovis under environmental conditions: is it a real biological risk for cattle? Rev Med Microbiol 27:20–24.  https://doi.org/10.1097/MRM.0000000000000059 CrossRefGoogle Scholar
  23. Vicente J, Barasona JA, Acevedo P, Ruiz-Fons JF, Boadella M, Diez-Delgado I, Beltran-Beck B, González-Barrio D, Queirós J, Montoro V, de la Fuente J, Gortázar C (2013) Temporal trend of tuberculosis in wild ungulates from Mediterranean Spain. Transbound Emerg Dis 60(Suppl 1):92–103.  https://doi.org/10.1111/tbed.12167 CrossRefPubMedGoogle Scholar
  24. Virgós E (2002) Factors affecting wild boar (Sus scrofa) occurrence in highly fragmented Mediterranean landscapes. Can J Zool 80:430–435.  https://doi.org/10.1139/z02-028 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Ana Balseiro
    • 1
    • 2
    Email author
  • Álvaro Oleaga
    • 3
  • Luis Miguel Álvarez Morales
    • 4
  • Pablo González Quirós
    • 4
  • Christian Gortázar
    • 5
  • José Miguel Prieto
    • 1
  1. 1.Servicio Regional de Investigación y Desarrollo Agroalimentario SERIDA, Centro de Biotecnología AnimalGijónSpain
  2. 2.Animal Health Department, Facultad de VeterinariaUniversidad de LeónLeónSpain
  3. 3.Sociedad de Servicios del Principado de Asturias SERPAOviedoSpain
  4. 4.Consejería de Infraestructuras, Ordenación del Territorio y Medio AmbienteOviedoSpain
  5. 5.SaBio Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM)Ciudad RealSpain

Personalised recommendations