Habitat requirements and differential abundance of the culpeo (Lycalopex culpaeus) in the high Andes of southern Ecuador

  • Marta GuntiñasEmail author
  • Jorge Lozano
  • Rodrigo Cisneros
  • Carlos Narváez
  • Daniela Arias
Original Article


Basic information on culpeos’ ecology for vast regions of its range is lacking. A model was built explaining the differential abundance of culpeos in the high Ecuadorian Andes. This model considered several environmental variables and is the first approach to evaluate the culpeo’s habitat requirements in Ecuador. Fixed 1-km transects were established along paths in the highest areas of Podocarpus National Park. Here, a culpeo abundance index (AI) was calculated monthly for each transect during a year. The AI was derived from the occurrence frequency of scats, and genetic analyses were performed to confirm scat identifications. Environmental variables (e.g., climate, vegetation cover, environmental richness, and diversity) were measured at two spatial scales (microhabitat and landscape). Predictors were grouped into orthogonal factors, and general linear models (GLM) were obtained by applying a selection method of models. The results show that the highest culpeo abundances were associated with well-preserved homogeneous areas that had high levels of rainfall and extreme temperatures, with these features being characteristic of pure “paramo” at the highest altitudes. In addition, a strong positive relationship was also found with the abundance of the mountain tapir. It is suggested that the subspecies of culpeo inhabiting this region could be particularly adapted to the ecological conditions of paramo areas. If so, habitat fragmentation and ongoing changes in land use, as well as climate change, could be potential threats for the culpeo both in the study area and the entire Ecuadorian high-Andean ecosystem.


Andean fox Global change Habitat disturbance Habitat use Paramo 



The authors thank Santiago Burneo and María Alejandra Camacho of the Museum of Zoology at the Pontifical Catholic University of Ecuador (QCAZ), for their help and contribution to the study of the culpeo’s ecology in southern Ecuador, as well as Marco Salazar, César Cartuche, David del Pozo, Diego Ochoa, and Jorge Armijos for their crucial help during the field surveys. We express our gratitude to the Regional Ministry of Environment No. 7 in Loja for facilitating the research permits and to the rangers for helping us with the logistics and fieldwork. Lisette Waits (University of Idaho, USA) also helped us with performing the genetic analyses. Two anonymous referees improved the original manuscript with their comments.

Funding information

This research was carried out with the economic support of the Universidad Técnica Particular de Loja (UTPL), Ecuador. Jorge Lozano was supported by a Prometeo Fellowship from SENESCYT, the National Agency for Education, and Science of the Government of Ecuador. He was also supported by Leuphana University of Lüneburg (Germany) and Complutense University of Madrid (Spain) during the editing of this paper.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Acosta H, Cavelier J, Londono S (1996) Aportes al conocimiento de la biología de la danta de montaña, Tapirus pinchaque, en los Andes Centrales de Colombia. Biotropica 28:258–266CrossRefGoogle Scholar
  2. Acosta-Jamett G, Simonetti J (2004) Habitat use by Oncifelis guigna and Pseudalopex culpaeus in a fragmented forest landscape in central Chile. Biodivers Conserv 13:1135–1151CrossRefGoogle Scholar
  3. Becking M, Vergara H, Cabrera O (2004) La diversidad florística y ecosistémica de los Páramos del Sur. Primera aproximación de la Sintaxonomía de los Páramos del Sur. In: Becking M (ed) Sistema microregional de conservación Podocarpus. Tejiendo (micro) corredores de conservación hacia la cogestión de una Reserva de Biósfera Cóndor-Podocarpus. Programa Podocarpus, Loja, pp 95–123Google Scholar
  4. Begon M, Townsend C, Harper J (2006) Ecology: from individuals to ecosystems. Blackwell Publishing Ltd, LiverpoolGoogle Scholar
  5. Blaum N, Rossmanith E, Schwager M, Jeltsch F (2007) Responses of mammalian carnivores to land use in arid savanna rangelands. Basic Appl Ecol 8:552–564CrossRefGoogle Scholar
  6. Borcard D, Legendre P (1994) Environmental control and spatial structure in ecological communities: an example using Oribatid mites (Acari, Oribatei). Environ Ecol Stat 1:37–61CrossRefGoogle Scholar
  7. Borcard D, Legendre P (2002) All-scale spatial analysis of ecological data by means of principal coordinates of neighbour matrices. Ecol Model 153:51–68CrossRefGoogle Scholar
  8. Borcard D, Legendre P, Drapeau P (1992) Partialling out the spatial component of ecological variation. Ecology 73:1045–1055CrossRefGoogle Scholar
  9. Burnham K, Anderson D (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer-Verlag, New YorkGoogle Scholar
  10. Burton N (2007) Landscape approaches to studying the effects of disturbance on water birds. Ibis 149:95–101CrossRefGoogle Scholar
  11. Campos C, Ojeda R (1997) Dispersal and germination of Prosopis flexuosa (Fabaceae) seeds by desert mammals in Argentina. J Arid Environ 35:707–714CrossRefGoogle Scholar
  12. Carrillo E, Wong G, Cuarón A (2000) Monitoring mammal populations in Costa Rican protected areas under different hunting restrictions. Conserv Biol 14:1580–1591CrossRefGoogle Scholar
  13. Cornejo FA, Jiménez MP (2001) Dieta del zorro andino Pseudalopex culpaeus (Canidae) en el matorral desértico del sur de Perú. Rev Ecol Latinoamericana 8:1–9Google Scholar
  14. Cuesta F, Peralvo M, Van Manen F (2003) Andean bear habitat use in the Oyacachi River basin. Ecuador Ursus 14:198–209Google Scholar
  15. Cuyckens G, Perovic P, Cristobal L (2015) How are wetlands and biological interactions related to carnivore distributions at high altitude? J Arid Environ 115:14–18CrossRefGoogle Scholar
  16. De Angelo C, Paviolo A, Di Bitetti M (2011) Differential impact of landscape transformation on pumas (Puma concolor) and jaguars (Panthera onca) in the upper Paraná Atlantic Forest. Divers Distrib 17:422–436CrossRefGoogle Scholar
  17. De Barba M, Adams JR, Goldberg CS, Stansbury CR, Arias D, Cisneros R, Waits LP (2014) Molecular species identification for multiple carnivores. Conserv Gen Res 6:821–824CrossRefGoogle Scholar
  18. Dormann CF, McPherson JM, Araujo MB et al (2007) Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30:609–628CrossRefGoogle Scholar
  19. Downer CC (1996) The mountain tapir, endangered ‘flagship’ species of the high Andes. Oryx 30:45–58CrossRefGoogle Scholar
  20. Downer CC (2001) Observations on the diet and habitat of the mountain tapir (Tapirus pinchaque). J Zool 254:279–291CrossRefGoogle Scholar
  21. Ebensperger LA, Mella JE, Simonetti JA (1991) Trophic-niche relationships among Galictis cuja, Dusicyon culpaeus, and Tyto alba in central Chile. J Mammal 72:820–823CrossRefGoogle Scholar
  22. Garavito NT, Álvarez E, Caro S et al (2012) Evaluación del estado de conservación de los bosques montanos en los Andes tropicales. Ecosistemas 21:148–166Google Scholar
  23. Garrote G, Pérez de Ayala R, Tellería JL (2014) A comparison of scat counts and camera-trapping as means of assessing Iberian lynx abundance. Eur J Wildl Res 60:885–889CrossRefGoogle Scholar
  24. Graham M (2003) Confronting multicollinearity in ecological multiple regression. Ecology 84:2809–2815CrossRefGoogle Scholar
  25. Guntiñas M, Lozano J, Cisneros R, Narváez C, Armijos J (2017) Feeding ecology of the Culpeo in southern Ecuador: wild ungulates being the main prey. Contrib Zool 86:169–180Google Scholar
  26. Herzog SK, Martínez R, Jørgensen PM, Tiessen H (2012) Cambio climático y biodiversidad en los Andes tropicales. Inter-American institute for Global Change Research (IAI) and Scientific Committee on Problems of the Enviroment (SCOPE), pp 348Google Scholar
  27. Hijmans R, Cameron S, Parra J, Jones P, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978CrossRefGoogle Scholar
  28. INAMHI (2012) Anuario Meteorológico 2012, Nro 49. Instituto Nacional De Meteorología e Hidrología, Dirección de Gestión Meteorológica, Procesamiento y Edición (SIGIHM). Accessed 3 September 2016
  29. IPCC (2014) Synthesis report. Contribution of working groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, GenevaGoogle Scholar
  30. Jiménez JE, Novaro AJ (2004) Culpeo (Pseudalopex culpaeus). In: Sillero-Zubiri C, Hoffmann M, Macdonald D (eds) Canids: foxes, wolves, jackals and dogs. Status survey and conservation action plan. Canid Specialist Group, Gland, Switzerland and Cambridge, pp 44–49Google Scholar
  31. Jiménez JE, Yáñez JL, Tabilo EL, Jaksic FM (1996) Niche-complementarity of South American foxes: reanalysis and test of a hypothesis. Rev Chil Hist Nat 69:113–123Google Scholar
  32. Johnson WE, Franklin WL (1994) Role of body size in the diets of sympatric gray and culpeo foxes. J Mammal 75:163–174CrossRefGoogle Scholar
  33. Josse C, Cuesta G, Navarro V, Barrena E, Cabrera E, Chacón-Moreno W, Ferreira M, Peralvo J, Saito AT (2009) Ecosistemas de los Andes del norte y centro. Bolivia, Colombia, Ecuador, Perú y Venezuela. Secretaría General de la Comunidad Andina, LimaGoogle Scholar
  34. Lantschner MV, Rusch V, Hayes JP (2012) Habitat use by carnivores at different spatial scales in a plantation forest landscape in Patagonia, Argentina. For Ecol Manag 269:271–278CrossRefGoogle Scholar
  35. Laundré JW, Hernández L, Altendorf KB (2001) Wolves, elk, and bison: reestablishing the “landscape of fear” in Yellowstone National Park, U.S.A. Can J Zool 79:1401–1409CrossRefGoogle Scholar
  36. Legendre P (1990) Evolutionary biogeography of the marine algae of the North Atlantic. NATO ASI Series. Springer-Verlag, BerlinGoogle Scholar
  37. Lizcano DJ, Amanzo J, Castellanos A, Tapia A, Lopez-Malaga CM (2016) Tapirus pinchaque. The IUCN Red List of Threatened Species. Accessed 2 December 2016
  38. Logan KA, Sweanor LL (2001) Desert puma. Evolutionary ecology and conservation of an enduring carnivore. Island press, Washington D.CGoogle Scholar
  39. Lozano J (2010) Habitat use by European wildcats (Felis silvestris) in central Spain: what is the relative importance of forest variables? Anim Biodivers Conserv 33:143–150Google Scholar
  40. Lozano J, Malo AF (2013) Relationships between human activity and richness and abundance of some bird species in the Paraguay River (Pantanal, Brazil). Ardeola 60:99–112CrossRefGoogle Scholar
  41. Lozano J, Virgós E, Cabezas-Díaz S, Mangas JG (2007) Increase of large game species in Mediterranean areas: is the European wildcat (Felis silvestris) facing a new threat? Biol Conserv 138:321–329CrossRefGoogle Scholar
  42. Lozano J, Virgós E, Cabezas-Díaz S (2013) Monitoring European wildcat populations using scat surveys in central Spain: are population trends related to wild rabbit dynamics or to landscape features? Zool Stud 52:16CrossRefGoogle Scholar
  43. Lucherini M (2016) Lycalopex culpaeus. The IUCN red list of threatened species. Accessed 2 December 2016
  44. MAE (2009) Parque Nacional Podocarpus. Ministerio del Ambiente de Ecuador http://wwwambientegobec/parque-nacional-podocarpus Accessed 4 April 2016
  45. Mangas J, Lozano J, Cabezas-Díaz S, Virgós E (2008) The priority value of scrubland habitats for carnivore conservation in Mediterranean ecosystems. Biodivers Conserv 17:43–51CrossRefGoogle Scholar
  46. Marquet P, Contreras L, Torresmura J, Silva S, Jaksic F (1993) Food habits of Pseudalopex foxes in the Atacama Desert, pre-Andean ranges, and the high-Andean plateau of northernmost Chile. Mammalia 57:131–135Google Scholar
  47. Martínez DR, Rau JR, Jaksić FM (1993) Respuesta numérica y selectividad dietaria de zorros (Pseudalopex spp.) ante una reducción de sus presas en el norte de Chile. Rev Chil Hist Nat 66:195–202Google Scholar
  48. Meserve P, Shadrick E, Kelt D (1987) Diets and selectivity of two Chilean predators in the northern semi-arid zone. Rev Chil Hist Nat 60:93–99Google Scholar
  49. Mladenoff D, Sickley T, Haight R, Wydeven A (1995) A regional landscape analysis and prediction of favourable gray wolf habitat in northern Great Lakes region. Conserv Biol 9:279–294CrossRefGoogle Scholar
  50. Moreira-Arce D, Vergara PM, Boutin S, Carrasco G, Briones R, Soto GE, Jiménez JE (2016) Mesocarnivores respond to fine-grain habitat structure in a mosaic landscape comprised by commercial forest plantations in southern Chile. For Ecol Manag 369:135–143CrossRefGoogle Scholar
  51. Naranjo-Piñera E (1995) Abundancia y uso de hábitat del tapir (Tapirus bairdii) en un bosque tropical húmedo de Costa Rica. Vida Silvestre Neotropical 4:20–31Google Scholar
  52. Noguera-Urbano EA, Ramírez-Chaves HE, Torres-Martínez MM (2016) Análisis geográfico y conservación del zorro andino Lycalopex culpaeus (Mammalia, Canidae) en Colombia. Iheringia 106:e2016014CrossRefGoogle Scholar
  53. Novaro AJ, Funes MC, Walker RS (2000) Ecological extinction of native prey of a carnivore assemblage in Argentine Patagonia. Biol Conserv 92:25–33CrossRefGoogle Scholar
  54. Novaro AJ, Funes MC, Walker RS (2005) An empirical test of source–sink dynamics induced by hunting. J Appl Ecol 42:910–920CrossRefGoogle Scholar
  55. Ojasti J, Dallmeier F (2000) Manejo de Fauna Silvestre Neotropical. SI/MAB Series 5. Smithsonian Institution/MAB Biodiversity Program, Washington D.CGoogle Scholar
  56. Ortega-Andrade HM, Prieto-Torres DA, Gómez-Lora I, Lizcano DJ (2015) Ecological and geographical analysis of the distribution of the mountain tapir (Tapirus pinchaque) in Ecuador: importance of protected areas in future scenarios of global warming. PLoS One 10:e0121137CrossRefGoogle Scholar
  57. Palacios R, Walker RS, Novaro AJ (2012) Differences in diet and trophic interactions of Patagonian carnivores between areas with mostly native or exotic prey. Mamm Biol 77:183–189CrossRefGoogle Scholar
  58. Pia MV (2013) Trophic interactions between puma and endemic culpeo fox after livestock removal in the high mountains of Central Argentina. Mammalia 77:273–283CrossRefGoogle Scholar
  59. Pia MV, López MS, Novaro AJ (2003) Efectos del ganado sobre la ecología trófica del zorro culpeo (Pseudalopex culpaeus smithersi) (Carnivora: Canidae) endémico del centro de Argentina. Rev Chil Hist Nat 76:313–321CrossRefGoogle Scholar
  60. Pia MV, Renison D, Mangeaud A, De Angelo C, Haro J (2013) Occurrence of top carnivores in relation to land protection status, human settlements and rock outcrops in the high mountains of central Argentina. J Arid Environ 91:31–37CrossRefGoogle Scholar
  61. Rangel TF, Diniz-Filho JAF, Bini LM (2010) SAM: a comprehensive application for spatial analysis in macroecology. Ecography 33:46–50CrossRefGoogle Scholar
  62. Recio MR, Arija CM, Cabezas-Díaz S, Virgós E (2015) Changes in Mediterranean mesocarnivore communities along urban and ex-urban gradients. Curr Zool 61:793–801CrossRefGoogle Scholar
  63. Richter M (2003) Using epiphytes and soil temperatures for eco-climatic interpretations in southern Ecuador. Erdkunde 57:161–181CrossRefGoogle Scholar
  64. Ripple WJ, Estes JA, Beschta RL, Wilmers CC, Ritchie EG, Hebblewhite M, Berger J, Elmhagen B, Letnic M, Nelson MP, Schmitz OJ, Smith DW, Wallach AD, Wirsing AJ (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484CrossRefGoogle Scholar
  65. Rivera J (2007) Parque Nacional Podocarpus. In: ECOLAP MAE. Guía del Patrimonio de Áreas Naturales Protegidas del Ecuador. ECOFUND, FAN, DarwinNet, IGM, Quito, pp 185–195Google Scholar
  66. Romo MC (1995) Food habits of the Andean fox (Pseudalopex culpaeus) and notes on the moutain cat (Felis colocolo) and puma (Felis concolor) in the Rio Abiseo National Park. Peru Mammalia 59:335–344Google Scholar
  67. Salvatori V, Vaglio-Laurin G, Meserve P, Boitani L, Campanella A (1999) Spatial organization, activity, and social interactions of culpeo foxes (Pseudalopex culpaeus) in north-central Chile. J Mammal 80:980–985CrossRefGoogle Scholar
  68. Sierra M (1999) Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador continental. Proyecto Inefan/Gef-Birf y Ecociencia, QuitoGoogle Scholar
  69. Simonetti JA, Grez AA, Estades CF (2013) Providing habitat for native mammals through understory enhancement in forestry plantations. Conserv Biol 27:1117–1121CrossRefGoogle Scholar
  70. Skole D, Tucker C (1993) Tropical deforestation and habitat fragmentation in the Amazon: satellite data from 1978 to 1988. Science 260:1905–1910CrossRefGoogle Scholar
  71. StatSoft Inc (2011) STATISTICA (data analysis software system), version 10.
  72. Tirira D (2007) Guía de Campo de los Mamíferos del Ecuador. Murciélago Blanco, QuitoGoogle Scholar
  73. Tirira D (2011) Libro Rojo de los mamíferos del Ecuador. Fundación Mamíferos y Conservación, Pontificia Universidad Católica del Ecuador y Ministerio del Ambiente del Ecuador, QuitoGoogle Scholar
  74. Tuyttens FAM, Long B, Fawcett T, Skinner A, Brown JA, Cheeseman CL, Roddam AW, Macdonald DW (2001) Estimating group size and population density of Eurasian badgers Meles meles by quantifying latrine use. J Appl Ecol 38:1114–1121CrossRefGoogle Scholar
  75. Underwood AJ (1996) Experiments in ecology. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  76. Webbon CC, Baker PJ, Harris S (2004) Faecal density counts for monitoring changes in red fox numbers in rural Britain. J Appl Ecol 41:768–779CrossRefGoogle Scholar
  77. Wilson DE, Mittermeier RA (2009) Handbook of the mammals of the world, carnivores. Lynx Edicions, BarcelonaGoogle Scholar
  78. Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic reference. JHU Press, BaltimoreGoogle Scholar
  79. Zar JH (2009) Biostatistical analysis. Prentice Hall, Englewood CliffsGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Marta Guntiñas
    • 1
    • 2
    Email author
  • Jorge Lozano
    • 3
  • Rodrigo Cisneros
    • 1
    • 2
  • Carlos Narváez
    • 1
  • Daniela Arias
    • 1
  1. 1.Departamento de Ciencias BiológicasUniversidad Técnica Particular de LojaLojaEcuador
  2. 2.ESCET, Departamento de Biología y GeologíaUniversidad Rey Juan CarlosMóstolesSpain
  3. 3.Unidad de Ecología, Departamento de Biodiversidad, Ecología y EvoluciónUniversidad Complutense de MadridMadridSpain

Personalised recommendations