Advertisement

Digestive efficiency, digesta passage, resting metabolism and methane production in captive juvenile nutria (Myocastor coypus)

  • K. B. Hagen
  • S. Frei
  • S. Ortmann
  • R. Głogowski
  • M. Kreuzer
  • M. Clauss
Original Article
  • 23 Downloads

Abstract

Although it is known that most herbivores produce methane (CH4), CH4 emissions in rodents are generally considered negligible and have rarely been measured in live animals. We measured CH4 emission in four captive juvenile nutria (Myocastor coypus) fed a diet of pelleted lucerne, as well as food intake, digestibility, and digesta mean retention time (MRT) of a solute and a particle marker. Marker excretion patterns revealed secondary peaks indicative of coprophagy, with MRTs of 30.2 ± 4.2 h and 24.2 ± 4.2 h for solutes and particles, respectively, and a resulting MRTsolute/MRTparticle ratio of 1.26 ± 0.07, which is still typical for a ‘mucus-trap’ colonic separation mechanism. At a dry matter intake of 28 ± 6 g kg body mass−0.75 d−1, the nutria digested organic matter and neutral detergent fibre at 59 ± 3% and 46 ± 3%, respectively, similar to what might be expected from horses on a diet with this fibre content. The respiratory quotient (CO2/O2) was 0.95 ± 0.02, the resting metabolic rate 266 ± 31 kJ kg body mass−0.75 day−1 and CH4 emissions averaged at 1.72 ± 0.17 L day−1 and 39.8 ± 11.3 L per kg dry matter intake; this at a CH4/CO2 ratio of 0.08 ± 0.04. Accordingly, methane yield was of a magnitude expected for a hypothetical ruminant of this body mass. While rodents’ CH4 contributions to global budgets might be low due to their low body size, this should not give rise to the assumption that CH4 production is not a relevant part of their digestive physiology.

Keywords

Hystricomorpha Rodentia Mean retention time Digestibility Basal metabolic rate 

Notes

Acknowledgments

We thank Urs von Riedmatten (Wildnispark Zürich) for his support of our study, and Heidrun Barleben and Carmen Kunz for chemical analyses.

Funding information

This study was part of project 310030_135252/1 funded by the Swiss National Science Foundation.

Compliance with ethical standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. Animal experiments were performed with approval of the Swiss Cantonal Animal Care and Use Committee Zurich (animal experiment licence no. 142/2011).

References

  1. Abbas A (1991) Feeding strategy of coypu (Myocastor coypus) in central western France. J Zool 224:385–401CrossRefGoogle Scholar
  2. Aimin W, Yueqi S, Qi Z (1995) Effect of different diet on young nutrias. J Noertheast Forestry Univ 6:68–70Google Scholar
  3. AOAC (1995) Official methods of analysis of AOAC International. Association of Official Analytical Chemists, ArlingtonGoogle Scholar
  4. Axell HE (1962) Coypu (Myocastor coypus) at Minsmere bird reserve. Trans Suffolk Nat Soc 12:177–183Google Scholar
  5. Barabasz B (2000) Comparison of feed digestibility determined in vivo in nutria and in vitro by laboratory methods. Scientifur 24:67–71Google Scholar
  6. Barabasz B, Jarosz S (1996) The effect of dietary fiber level on nutrient digestibility, rate of chyme passage and activity of amylolytic enzymes in the digestive tract of nutria. Zesz Nauk Ak Rol Krakow Zoot 31:65–72Google Scholar
  7. Bickel A, Geréz L (1936) Stoffwechselmechanik und Ernährungsart in ihrer Beziehung zur erbgebundenen Stellung des Menschen unter den Herbivores, Karnivoren und Omnivoren. Dt Med Wschr 62(41):1665–1668CrossRefGoogle Scholar
  8. Björnhag G, Snipes RL (1999) Colonic spearation mechanism in lagomorph and rodent species - a comparison. Zoosyst Evol 75:275–281CrossRefGoogle Scholar
  9. Borgnia M, Galante ML, Cassini MH (2000) Diet of the coypu (nutria, Myocastor coypus) in agro-systems of Argentinean pampas. J Wildl Soc 64:354–361CrossRefGoogle Scholar
  10. Brouwer E (1965) Report of sub-committee on constants and factors. In: Blaxter K (ed) Energy metabolism. Academic Press, London, pp 441–443Google Scholar
  11. Clauss M, Besselmann D, Schwarm A, Ortmann S, Hatt J-M (2007a) Demonstrating coprophagy with passage markers? The example of the plains viscacha (Lagostomus maximus). Comp Biochem Physiol A 147:453–459CrossRefGoogle Scholar
  12. Clauss M, Schwarm A, Ortmann S, Streich WJ, Hummel J (2007b) A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores. Comp Biochem Physiol A 148:249–265CrossRefGoogle Scholar
  13. Clauss M, Steuer P, Müller DWH, Codron D, Hummel J (2013) Herbivory and body size: allometries of diet quality and gastrointestinal physiology, and implications for herbivore ecology and dinosaur gigantism. PLoS One 8:e68714CrossRefPubMedPubMedCentralGoogle Scholar
  14. Crutzen PJ, Aselmann I, Seiler W (1986) Methane production by domestic animals, wild ruminants, other herbivorous fauna, and humans. Tellus 38B:271–284CrossRefGoogle Scholar
  15. Demment MW, Van Soest PJ (1985) A nutritional explanation for body size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672CrossRefGoogle Scholar
  16. Derno M, Jentsch W, Schweigel M, Kuhla S, Metges CC, Matthes HD (2005) Measurements of heat production for estimation of maintenance energy requirements of Hereford steers. J Anim Sci 83:2590–2597CrossRefPubMedGoogle Scholar
  17. Fievez V, Mbanzamihigo L, Piattoni F, Demeyer D (2001) Evidence for reductive acetogenesis and its nutritional significance in ostrich hindgut as estimated from in vitro incubations. J Anim Physiol Anim Nutr 85:271–280CrossRefGoogle Scholar
  18. Franz R, Soliva CR, Kreuzer M, Steuer P, Hummel J, Clauss M (2010) Methane production in relation to body mass of ruminants and equids. Evol Ecol Res 12:727–738Google Scholar
  19. Franz R, Soliva CR, Kreuzer M, Hummel J, Clauss M (2011) Methane output of rabbits (Oryctogalus cuniculus) and Guinea pigs (Cavia porcellus) fed a hay-only diet: implications for the scaling of methane production with body mass in non-ruminant mammalian herbivores. Comp Biochem Physiol A 158:177–181CrossRefGoogle Scholar
  20. Frei S, Ortmann S, Reutlinger C, Kreuzer M, Hatt J-M, Clauss M (2015) Comparative digesta retention patterns in ratites. Auk Ornithol Adv 132:119–131Google Scholar
  21. Gacek K (1976) Digestibility coefficient of rations used in the nutrition of coypus. Roczniki Naukowe Zootechniki 3:171–176Google Scholar
  22. Genoud M, Isler K, Martin RD (2017) Comparative analyses of basal rate of metabolism in mammals: data selection does matter. Biol Rev 93:404–438CrossRefPubMedGoogle Scholar
  23. Gill J, Bieguszewski H (1960) Die Durchgangszeiten der Nahrung durch den Verdauungskanal der Nutria (Myocastor coypus). Acta Theriol 4:11–26CrossRefGoogle Scholar
  24. Godwin S, Kang A, Gulino LM, Manefield M, Gutierrez-Zamora M-L, Kienzle M, Ouwerkerk D, Dawson K, Klieve AV (2014) Investigation of the microbial metabolism of carbon dioxide and hydrogen in the kangaroo foregut by stable isotope probing. Int Soc Microb Ecol 8:1855–1865Google Scholar
  25. Gosling LM (1979) The twenty-four hour activity cycle of captive coypus (Myocastor coypus). J Zool 187:341–367CrossRefGoogle Scholar
  26. Guichón ML, Benitez VB, Abba A, Borgnia M, Cassini MH (2003) Foraging behaviour of coypus Myocastor coypus: why do coypus consume aquatic plants? Acta Oecol 24:241–246CrossRefGoogle Scholar
  27. Hackstein JHP, Van Alen TA (1996) Fecal methanogens and vertebrate evolution. Evolution 50:559–572CrossRefPubMedGoogle Scholar
  28. Hagen KB, Besselmann D, Cyrus-Eulenberger U, Vendl C, Ortmann S, Zingg R, Kienzle E, Kreuzer M, Hatt J-M, Clauss M (2015a) Digestive physiology of the plains viscacha (Lagostomus maximus), a large herbivorous hystricomorph rodent. Zoo Biol 34:345–359CrossRefPubMedGoogle Scholar
  29. Hagen KB, Tschudin A, Liesegang A, Hatt J-M, Clauss M (2015b) Organic matter and macromineral digestibility in domestic rabbits (Oryctolagus cuniculus) as compared to other hindgut fermenters. J Anim Physiol Anim Nutr 99:1197–1209CrossRefGoogle Scholar
  30. Hagen KB, Dittmann MT, Ortmann S, Kreuzer M, Hatt J-M, Clauss M (2016) Retention of solute and particle markers in the digestive tract of chinchillas (Chinchilla laniger). J Anim Physiol Anim Nutr 100:801–806CrossRefGoogle Scholar
  31. Hagen KB, Müller DHW, Ortmann S, Kreuzer M, Clauss M (2018) Digesta kinetics in two arvicoline rodents, the field vole (Microtus agrestis) and the steppe lemming (Lagurus lagurus). Mamm Biol 89:71–78CrossRefGoogle Scholar
  32. Hirakawa H (2001) Coprophagy in leporids and other mammalian herbivores. Mammal Rev 31:61–80CrossRefGoogle Scholar
  33. Hirakawa H (2002) Supplement: coprophagy in leporids and other mammalian herbivores. Mammal Rev 32:150–152CrossRefGoogle Scholar
  34. Holleman DF, White RG (1989) Determination of digesta fill and passage rate from non absorbed particulate phase markers using the single dosing method. Can J Zool 67:488–494CrossRefGoogle Scholar
  35. Hörnicke H, Schürg A, Krattenmacher R (1985) Kotfressen (Koprophagie) beim Sumpfbiber (Nutria) - eine normale, für die Nährstoffversorgung wichtige Verhaltensweise. Dt Pelztierz 50:161–162Google Scholar
  36. Hullar I, Fekete S, Gippert T (1992) How do coypu and rabbit digest the same feedstuffs? Scientifur 16:298–302Google Scholar
  37. Hume ID, Sakaguchi E (1991) Patterns of digesta flow and digestion in foregut and hindgut fermenters. In: Tsuda T, Saaski Y, Kawashima R (eds) Physiological aspects of digestion and metabolism in ruminants. Academic Press, San Diego, pp 427–451CrossRefGoogle Scholar
  38. Jensen BB (1996) Methanogenesis in monogastric animals. Environ Monitor Assess 42:99–112CrossRefGoogle Scholar
  39. Justice KE, Smith FA (1992) A model of dietary fiber utilization by small mammalian herbivores, with empirical results for Neotoma. Am Nat 139:398–416CrossRefGoogle Scholar
  40. Karasov WH, Martínez del Rio C (2007) Physiological ecology: how animals process energy, nutrients, and toxins. Princeton University press, PrincetonGoogle Scholar
  41. Kirkwood JK (1996) Nutrition of captive and free-living wild animals. In: Kelly N, Wills J (eds) BSAVA manual of companion animal nutrition and feeding. British Small Animal Veterinary Association, Cheltenham, pp 235–243Google Scholar
  42. Kirner P (1931) Über Koprophagie bei Nutria. Dt Pelztierz 6:153Google Scholar
  43. Levey D, Martínez del Rio C (1999) Test, rejection and reformulation of a chemical reactor-based model of gut function in a fruit-eating bird. Physiol Biochem Zool 72:369–383CrossRefPubMedGoogle Scholar
  44. Lomicki A (1957) Rytmika dobowa aktywnosci: nutrii Myocastor coypus [the daily rhythm of activity in the nutria Myocastor coypus]. Folia Biol 5:293–306Google Scholar
  45. Marounek M, Skřivan M, Březina P, Hoza I (2005) Digestive organs, caecal metabolites and fermentation pattern in coypus (Myocastor coypus) and rabbits (Oryctolagus cuniculus). Acta Vet Brno 74:3–7CrossRefGoogle Scholar
  46. Matsuda I, Sha JCM, Ortmann S, Schwarm A, Grandl F, Caton J, Jens W, Kreuzer M, Marlena D, Hagen KB, Clauss M (2015) Excretion patterns of solute and different-sized particle passage markers in foregut-fermenting proboscis monkey (Nasalis larvatus) do not indicate an adaptation for rumination. Physiol Behav 149:45–52CrossRefPubMedGoogle Scholar
  47. McNab BK (2008) An analysis of the factors that influence the level and scaling of mammalian BMR. Comp Biochem Physiol A 151:5–28CrossRefGoogle Scholar
  48. Mertens DR (2003) Challenges in measuring insoluble dietary fiber. J Anim Sci 81:3233–3249CrossRefPubMedGoogle Scholar
  49. Moinard C, Doncaster CP, Barré H (1992) Indirect calorimetry measurements of behavioral thermoregulation in a semiaquatic social rodent, Myocastor coypus. Can J Zool 70:907–911CrossRefGoogle Scholar
  50. Morvan B, Bonnemoy F, Fonty G, Gouet P (1996) Quantitative determination of H2-utilizing acetogenic and sulfate-reducing bacteria and methanogenic archaea from digestive tract of different mammals. Curr Microbiol 32:129–133CrossRefPubMedGoogle Scholar
  51. Müller DWH, Codron D, Meloro C, Munn A, Schwarm A, Hummel J, Clauss M (2013) Assessing the Jarman-bell principle: scaling of intake, digestibility, retention time and gut fill with body mass in mammalian herbivores. Comp Biochem Physiol A 164:129–140CrossRefGoogle Scholar
  52. Norris JD (1967) A campaign against feral coypus (Myocastor coypus) in Great Britain. J Appl Ecol 4:191–199CrossRefGoogle Scholar
  53. Otto W (1954) Über die Verdauung des Sumpfbibers (Myocastor coypus). Arch Anim Nutr 4:119–150Google Scholar
  54. Pei Y-X, Wang D-H, Hume I (2001) Selective digesta retention and coprophagy in Brandt's vole (Microtus brandti). J Comp Physiol B 171:457–464CrossRefPubMedGoogle Scholar
  55. Pérez-Barbería FJ (2017) Scaling methane emissions in ruminants and global estimates in wild populations. Sci Total Environ 579:1572–1580CrossRefPubMedGoogle Scholar
  56. Robbins CT (1993) Wildlife feeding and nutrition. Academic Press, San DiegoGoogle Scholar
  57. Romanovskaya AA (2008) Methane and nitrous oxide emissions in the agricultural sector of Russia. Russ Meterorol Hydrol 33:117–124CrossRefGoogle Scholar
  58. Sakaguchi E, Nabata A (1992) Comparison of fibre digestion and digesta retention time between nutrias (Myocaster coypus) and Guinea-pigs (Cavia porcellus). Comp Biochem Physiol A 103:601–604CrossRefGoogle Scholar
  59. Segal AN (1978) Thermoregulation in Myocastor coypus in summer. Zoologicheskii Zhurnal 57:1878–1883Google Scholar
  60. Snipes RL, Hörnicke H, Björnhag G, Stahl W (1988) Regional differences in hindgut structure and function in the nutria (Myocastor coypus). Cell Tissue Res 252:435–447CrossRefPubMedGoogle Scholar
  61. Takahashi T, Sakaguchi E (1998) Behaviors and nutritional importance of coprophagy in captive adult and young nutrias (Myocastor coypus). J Comp Physiol B 168:281–288CrossRefPubMedGoogle Scholar
  62. Takahashi T, Sakaguchi E (2000) Role of the furrow of the proximal colon in the production of soft and hard feces in nutrias (Myocastor coypus). J Comp Physiol B 170:531–535CrossRefPubMedGoogle Scholar
  63. Thielemans MF, François E, Bodart C, Thewis A (1978) Mesure du transit gastrointestinal chez le porc a l'aide des radiolanthanides. Comparaison avec le mouton. Ann Biol Anim Biochim Biophys 18:237–247CrossRefGoogle Scholar
  64. Udén P, Colucci PE, Van Soest PJ (1980) Investigation of chromium, cerium and cobalt as markers in digesta. Rate of passage studies. J Sci Food Agric 31:625–632CrossRefPubMedGoogle Scholar
  65. Van Soest PJ (1982) Nutritional ecology of the ruminant. O & B Books Inc., CorvallisGoogle Scholar
  66. Vendl C, Clauss M, Stewart M, Leggett K, Hummel J, Kreuzer M, Munn A (2015) Decreasing methane yield with increasing food intake keeps daily methane emissions constant in two foregut fermenting marsupials, the western grey kangaroo and red kangaroo. J Exp Biol 218:3425–3434CrossRefPubMedGoogle Scholar
  67. Vendl C, Frei S, Dittmann MT, Furrer S, Ortmann S, Lawrenz A, Lange B, Munn A, Kreuzer M, Clauss M (2016a) Methane production by two non-ruminant foregut-fermenting herbivores: the collared peccary (Pecari tajacu) and the pygmy hippopotamus (Hexaprotodon liberiensis). Comp Biochem Physiol A 191:107–114CrossRefGoogle Scholar
  68. Vendl C, Frei S, Dittmann MT, Furrer S, Osmann C, Ortmann S, Munn A, Kreuzer M, Clauss M (2016b) Digestive physiology, metabolism and methane production of captive Linné's two-toed sloths (Choloepus didactylus). J Anim Physiol Anim Nutr 100:552–564CrossRefGoogle Scholar
  69. Wagner JA (1963) Gross and microscopic anatomy of the digestive system of the nutria, Myocastor coypu bonariensis. J Morphol 112:319–333CrossRefPubMedGoogle Scholar
  70. Willner GR, Chapman JA, Pursley D (1979) Reproduction, physiological responses, food habits, and abundance of nutria on Maryland marshes. Wildl Monogr 65:3–43Google Scholar
  71. Wilsey BJ, Chabreck RH, Linscombe RG (1991) Variation in nutria diets in selected freshwater forested wetlands of Louisiana. Wetlands 11:263–278CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
  2. 2.WädenswilSwitzerland
  3. 3.Leibniz Instiute for Zoo and Wildlife Research (IZW) BerlinBerlinGermany
  4. 4.Department of Animal Breeding, Faculty of Animal SciencesWarsaw University of Life Sciences (WULS-SGGW)WarsawPoland
  5. 5.Institute of Agricultural SciencesETH ZurichZurichSwitzerland

Personalised recommendations