Advertisement

Suitability of GPS telemetry for studying the predation of Eurasian lynx on small- and medium-sized prey animals in the Northwestern Swiss Alps

  • Kristina Vogt
  • Eric Vimercati
  • Andreas Ryser
  • Elizabeth Hofer
  • Sven Signer
  • Claudio Signer
  • Urs Breitenmoser
Original Article

Abstract

Predator diet composition and kill rates have to be known in order to quantify predation pressure on prey populations. While ground-truthing of GPS location clusters (GLCs) is a reliable method for finding large- and medium-sized prey items, finding the remains of small prey is still considered a major difficulty. In this study, we searched GLCs of Eurasian lynx Lynx lynx in the Northwestern Swiss Alps in order to determine if GLC analysis is a suitable method for detecting kill sites of new-born ungulates and other small prey animals. Juvenile ungulates made up 26% of the prey spectrum and 17% total consumed biomass (TCB), while hares, marmots, and red foxes accounted for 25% of all found prey items (8% TCB). Lynx spent significantly more time in GLCs containing large prey, but no clear transition in GLC duration for distinguishing between large (≥ 10 kg; mean duration = 46.9 h, SD = 30.1 h) and small prey (< 10 kg; mean duration = 26.7 h, SD = 21.1 h) could be defined. We explored the influence of different cut-off values for GLC duration on lynx diet composition. GLCs with a duration of < 9 h had less than 25% detection success, but still contained 13% of all small prey items. We conclude that GLC analysis is a promising tool for exploring predation on new-born ungulates, mesopredators, and other smaller prey animals weighing between 2 and 10 kg. However, substantial field effort is mandatory to sufficiently detect prey remains in short-lasting GLCs.

Keywords

GPS telemetry Lynx lynx Predation Juvenile ungulates GPS location clusters 

Notes

Acknowledgements

We thank the Federal Office of Environment and the hunting administration of the Canton of Bern for the permits to capture and tag lynx in our study area. Special thanks go to the game wardens of the Canton of Bern for their essential help with capturing and monitoring of lynx. We further thank the following wildlife veterinarians of the FIWI Bern for their participation in lynx captures: Marie-Pierre Ryser-Degiorgis, Mirjam Pewsner, and Roman Meier. We also thank Nicolas Beerli, Oliver Deck, Susana Freire, Mélissa Lenarth, and Aljoscha Schuster for their help with searching kills and we are grateful to Nathan Svoboda and Tyler Petroelje for sharing their R-script for cluster analysis and to Dominik Vogt for help with calculation of GLC excursion durations.

Funding information

We thank the following foundations and funding bodies for their support of this study: Zürcher Tierschutz, Stotzer-Kästli Foundation, Ormella Foundation, Haldimann Foundation, University of Zurich, Temperatio Foundation, Karl Mayer Foundation, Berthold Suhner Foundation, Janggen-Pöhn Foundation, FAG Basel, Basler Stiftung für Biologische Forschung.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Supplementary material

10344_2018_1225_MOESM1_ESM.docx (70 kb)
ESM 1 (DOCX 70 kb)

References

  1. Andrén H, Liberg O (2015) Large impact of Eurasian lynx predation on roe deer population dynamics. PLoS One 10(3):e0120570.  https://doi.org/10.1371/journal.pone.0120570 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Von Arx M, Breitenmoser-Würsten C, Zimmermann F, Kunz F, Vogt K, Ryser A, Breitenmoser U (2017) Der Luchs im Jura- unter besonderer Berücksichtigung des Solothurner Juras. Mitteilungen/ Naturforschende Gesellschaft des Kantons Solothurn, 43. https://www.e-periodica.ch/digbib/volumes?UID=ngs-004 (In German)
  3. Bacon MM, Becic GM, Epp MT, Boyce MS (2011) Do GPS clusters really work? Carnivore diet from scat analysis and GPS telemetry methods. Wildlife Soc B 35:409–415CrossRefGoogle Scholar
  4. Bartnick TD, Van Deelen TR, Craighead D (2013) Variation in cougar (Puma concolor) predation habits during wolf (Canis lupus) recovery in the southern Greater Yellowstone Ecosystem. Can J Zoolog 91:82–93CrossRefGoogle Scholar
  5. Bates D, Maechler M, Bolker B, Walker S (2015) lme4: linear mixed-effects models using Eigen and S4. R package version 1.1–9, <URL: https://CRAN.R-project.org/package=lme4>. (05/10/2018)
  6. Blecha KA, Alldredge MW (2015) Improvements on GPS location cluster analysis for the prediction of large carnivore feeding activities: ground-truth detection probability and inclusion of activity sensor measures. PLoS One 10(9):e0138915. doi:  https://doi.org/10.1371/journal.pone.0138915
  7. Breitenmoser U, Breitenmoser-Würsten C (2008) Der Luchs. Ein Grossraubtier in der Kulturlandschaft. Salm Verlag, Bern (In German)Google Scholar
  8. Breitenmoser U, Ryser A, Molinari-Jobin A, Zimmermann F, Haller H, Molinari P, Breitenmoser-Würsten C (2010) The changing impact of predation as a source of conflict between hunters and reintroduced lynx in Switzerland. In: MacDonald DW, Loveridge AJ (eds) Biology and conservation of wild felids. Oxford University Press, Oxford, pp 493–505Google Scholar
  9. Elbroch LM, Lowrey B, Wittmer HU (2017) The importance of fieldwork over predictive modelling in quantifying predation events of carnivores marked with GPS technology. J Mammal 99:223–232CrossRefGoogle Scholar
  10. Foran DR, Crooks KR, Minta SC (1997) Species identification from scat: an unambiguous genetic method. Wildl Soc Bull 25:835–839Google Scholar
  11. Gervasi V, Nilsen EB, Odden J, Bouyer Y, Linnell JDC (2013) The spatio-temporal distribution of wild and domestic ungulates modulates lynx kill rates in a multi-use landscape. J Zool 292:175–183CrossRefGoogle Scholar
  12. Hausser J (1995) Säugetiere der Schweiz. Denkschriften der Schweizerischen Akademie der Naturwissenschaften, Band 103, Birkhäuser Verlag, Basel, pp 203-461 (In German)Google Scholar
  13. Heurich M, Zeis K, Küchenhoff H, Müller J, Belotti E, Bufka L, Woelfing B (2016) Selective predation of a stalking predator on ungulate prey. PLoS One 11:e0158449.  https://doi.org/10.1371/journal.pone.0158449 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Jobin A, Molinari P, Breitenmoser U (2000) Prey spectrum, prey preference and consumption rates of Eurasian lynx in the Swiss Jura Mountains. Acta Theriol 45:243–252CrossRefGoogle Scholar
  15. Klare U, Kamler JF, Macdonald DW (2011) A comparison and critique of different scat-analysis methods for determining carnivore diet. Mammal Rev 41:294–312CrossRefGoogle Scholar
  16. Knopff KH, Knopff AA, Warren MB, Boyce MS (2009) Evaluating global positioning system telemetry techniques for estimating cougar predation parameters. J Wildlife Manage 73:586–597CrossRefGoogle Scholar
  17. Knopff KH, Knopff AA, Kortello A, Boyce MS (2010) Cougar kill rate and prey composition in a multiprey system. J Wildlife Manage 74:1435–1447CrossRefGoogle Scholar
  18. Krofel M, Huber D, Kos I (2011) Diet of Eurasian lynx Lynx lynx in the northern Dinaric Mountains (Slovenia and Croatia). Importance of edible dormouse Glis glis as alternative prey. Acta Theriol 56:315–322CrossRefGoogle Scholar
  19. Krofel M, Skrbinšek T, Kos I (2013) Use of GPS location clusters analysis to study predation, feeding, and maternal behavior of the Eurasian lynx. Ecol Res 28:103–116CrossRefGoogle Scholar
  20. Krofel M, Klemen J, Kljun F, Kos I, Potočnik H, Ražen N, Zor P, Žagar A (2014) Comparing patterns of human harvest and predation by Eurasian lynx Lynx lynx on Eurpoean roe deer Capreolus capreolus in a temperate forest. Eur J Wildl Res 60:11–21CrossRefGoogle Scholar
  21. Linnell JDC, Aanes R, Andersen R (1995) Who killed Bambi? The role of predation in the neonatal mortality of temperate ungulates. Wildl Biol 1:209–223CrossRefGoogle Scholar
  22. Lone K, Loe LE, Gobakken T, Linnell JDC, Odden J, Remmen J, Mysterud A (2014) Living and dying in a multi-predator landscape of fear: roe deer are squeezed by contrasting pattern of predation risk imposed by lynx and humans. Oikos 123:641–651CrossRefGoogle Scholar
  23. Marucco F, Pletscher DH, Boitani L (2008) Accuracy of scat sampling for carnivore diet analysis: wolves in the Alps as a case study. J Mammal 89(3):665–673Google Scholar
  24. Martins Q, Horsnell WGC, Titus W, Rautenbach T, Harris S (2011) Diet determination of the Cape Mountain leopards using global positioning system location clusters and scat analysis. J Zool 283:81–87CrossRefGoogle Scholar
  25. Matthews A, Ruykys L, Ellis B, Fitzgibbon S, Lunney D, Crowther MS, Glen AS, Purcell B, Moseby K, Stott J, Fletcher D, Wimpenny C, Allen BL, Van Bommel L, Roberts M, Davies N, Green K, Newsome T, Ballard G, Fleming P, Dickman CR, Eberhart A, Troy S, McMahon C, Wiggins N (2013) The success of GPS collar deployments on mammals in Australia. Aust Mammal 35:65–83CrossRefGoogle Scholar
  26. Mattioli L, Capitani C, Gazzola A, Scandura M, Apollonio M (2011) Prey selection and dietary response by wolves in a high-density multi-species ungulate community. Eur J Wildl Res 57:909–922CrossRefGoogle Scholar
  27. Mattisson J, Odden J, Nilsen EB, Linnell JDC, Persson J, Andrén H (2011) Factors affecting Eurasian lynx kill rates on semi-domestic reindeer in northern Scandinavia: can ecological research contribute to the development of a fair compensation system? Biol Conserv 144:3009–3017CrossRefGoogle Scholar
  28. Molinari-Jobin A, Molinari P, Breitenmoser-Würsten C, Breitenmoser U (2002) Significance of lynx Lynx lynx predation for roe deer Capreolus capreolus and chamois Rupicapra rupicapra mortality in the Swiss Jura Mountains. Wildlife Biol 8:109–115CrossRefGoogle Scholar
  29. Molinari-Jobin A, Molinari P, Loison A, Gaillard J-M, Breitenmoser U (2004) Life cycle period and activity of prey influence their susceptibility to predators. Ecography 27:323–329CrossRefGoogle Scholar
  30. Molinari-Jobin A, Zimmermann F, Ryser A, Breitenmoser-Würsten C, Capt S, Breitenmoser U, Molinari P, Haller H, Eyholzer R (2007) Variation in diet, prey selectivity and home-range size of Eurasian lynx Lynx lynx in Switzerland. Wildl Biol 13(4):393–405Google Scholar
  31. Muggeo VMR (2017) Regression models with break-points/ change-points estimation (Version 0.5–3.0). https://cran.r-project.org/web/packages/segmented/segmented.pdf (05/10/2018)
  32. Nilsen EB, Linnell JDC, Odden J, Anderson R (2009) Climate, season, and social status modulate the functional response of an efficient stalking predator: the Eurasian lynx. J Anim Ecol 78:741–751CrossRefGoogle Scholar
  33. Palacios V, Mech LD (2011) Problems with studying wolf predation on small prey in summer via global positioning system collars. Eur J Wildl Res 57(1):149–156Google Scholar
  34. R Core Team (2014) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/. Accessed 14 Nov 2018
  35. Ray R-R, Seibold H, Heurich M (2014) Invertebrates outcompete vertebrate facultative scavengers in simulated lynx kills in the Bavarian Forest National Park, Germany. Anim Biodivers Conserv 37:77–88Google Scholar
  36. Riley SJ, DeGloria SD, Elliot R (1999) A terrain ruggedness index that quantifies topographic heterogeneity. Intermt J Sci 5:23–27Google Scholar
  37. Rühe F, Burmester T, Ksinsik M (2007) Data for estimating eaten prey masses from Eurasian lynx Lynx lynx scats in Central and East Europe. Acta Theriol 52:317–322CrossRefGoogle Scholar
  38. Rühe F, Ksinsik M, Kiffner C (2008) Conversion factors in carnivore scat analysis: sources of bias. Wildl Biol 14:500–506CrossRefGoogle Scholar
  39. Ruth TK, Buotte PC, Quigley HB (2010) Comparing ground telemetry and global positioning system methods to determine cougar kill rates. J Wildlife Manage 74:1122–1133CrossRefGoogle Scholar
  40. Ryser A, Scholl M, Zwahlen M, Oetliker M, Ryser-Degiorgis M-P, Breitenmoser U (2005) A remote-controlled teleinjection system for the low-stress capture of large mammals. Wildlife Soc B 33:721–730CrossRefGoogle Scholar
  41. Ryser-Degiorgis M-P, Lutz H, Bauer K, Sager H, Ryser A, Zimmermann F, Breitenmoser-Wuersten C, Breitenmoser U (2002) Veterinary supervision of lynx translocation within the Swiss Alps. European Association of Zoo- and Wildlife Veterinarians (EAZWV), 4th scientific meeting, joint with the annual meeting of the European Wildlife Disease Association (EWDA), May 8-12, Heidelberg, Germany. 147–153Google Scholar
  42. Schnidrig-Petrig R, Salm UP (2009) Die Gemse- Biologie und Jagd. Salm Verlag, Bern, pp 22 (In German)Google Scholar
  43. Shannon CE (1948) A mathematical theory of communication. Bell Syst Tech J 27:379–423CrossRefGoogle Scholar
  44. Soulé ME, Bolger DT, Alberts AC, Wright J, Sorice M, Hill S (1988) Reconstructed dynamics of rapid extinctions of chaparral-requiring birds in urban habitat islands. Conserv Biol 2:75–92CrossRefGoogle Scholar
  45. Stubbe C (1997) Rehwild: Biologie, Ökologie, Bewirtschaftung. Parey Buchverlag, Berlin, pp 44–52 (In German)Google Scholar
  46. Sunde P, Kvam T, Bolstad JP, Bronndal M (2000) Foraging of lynxes in a managed boreal-alpine environment. Ecography 23:291–298CrossRefGoogle Scholar
  47. Svoboda NJ, Belant JL, Beyer DE, Duquette JF, Martin JA (2013) Identifying bobcat Lynx rufus kill sites using a global positioning system. Wildlife Biol 19:78–86CrossRefGoogle Scholar
  48. Swiss Federal Statistical Office (2015) STAT-TAB: Die interaktive Statistikdatenbank. Ständige und Nichtständige Wohnbevölkerung nach Region, Nationalität und Geburtsort http://wwwbfsadminch Accessed 12 November 2015 (In German)
  49. Vogt K, Hofer E, Ryser A, Kölliker M, Breitenmoser U (2016) Is there a trade-off between scent marking and hunting behaviour in a stalking predator, the Eurasian lynx, Lynx lynx? Anim Behav 117:59–68CrossRefGoogle Scholar
  50. Wandeler A, Huber W (1969) Gewichtswachstum und jahreszeitliche Gewichtsschwankungen bei Reh und Gemse. Revue suisse de zoologie: annales de la Société suisse de zoologie et du Muséum d'histoire naturelle de Genève, 1969/76/3/686 (In German)Google Scholar
  51. Wang Y, Nickel B, Rutishauser M, Bryce CM, Williams TM, Elkaim GH, Wilmers CC (2015) Movement, resting, and attack behaviors of wild pumas are revealed by tri-axial accelerometer measurements. Mov Ecol 3:2.  https://doi.org/10.1186/s40462-015-0030-0 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Webb NF, Hebblewhite M, Merrill EH (2008) Statistical methods for identifying wolf kill sites using global positioning system locations. J Wildlife Manage 72:798–807CrossRefGoogle Scholar
  53. Williams TM, Wolfe L, Davis T, Kendall T, Richter B, Wang Y, Bryce CM, Elkaim GH, Wilmers CC (2014) Instantaneous energetics of puma kills reveal advantage of felid sneak attacks. Science 346:81–85CrossRefGoogle Scholar
  54. Zimmermann F, Pesenti E, Breitenmoser U (2012a) Fotofallen-Einsatz im Aufsichtsgebiet von Erich Peissard im Kanton Freiburg im Winter 2011/12. KORA Bericht zu handen des Kantons Freiburg. http://www.kora.ch/index.php?id=134 (In German)
  55. Zimmermann F, Pesenti E, Mini L, Lanz T, Breitenmoser-Würsten C, Breitenmoser U (2012b) Abundanz und Dichte des Luchses in den Nordwestalpen: Fang-Wiederfang-Schätzung mittels Fotofallen im K-VI im Winter 2011/12. KORA Bericht, 57. http://www.kora.ch/index.php?id=135&L=0. (In German)
  56. Zimmermann F, Foresti D, Bach J, Dulex N, Breitenmoser-Würsten C, Breitenmoser U (2014) Abundanz und Dichte des Luchses in den Nordwest-alpen: Fang-Wiederfang-Schätzung mittels Fotofallen im K-VI im Winter 2013/14. KORA Bericht, 64. http://www.kora.ch/index.php?id=135 (In German)

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Kristina Vogt
    • 1
    • 2
  • Eric Vimercati
    • 1
    • 3
  • Andreas Ryser
    • 1
  • Elizabeth Hofer
    • 1
  • Sven Signer
    • 1
  • Claudio Signer
    • 3
  • Urs Breitenmoser
    • 1
    • 4
  1. 1.KORA, Carnivore Ecology and Wildlife ManagementMuri b. BernSwitzerland
  2. 2.Department of Environmental Sciences, Zoology and EvolutionUniversity of BaselBaselSwitzerland
  3. 3.Research Group Wildlife Management, Institute of Natural Resource SciencesZurich University of Applied Sciences ZHAWWinterthurSwitzerland
  4. 4.Institute of Veterinary VirologyUniversity of BernBernSwitzerland

Personalised recommendations