Impact of wind farms on soaring bird populations at a migratory bottleneck

  • Beatriz Martín
  • Coline Perez-Bacalu
  • Alejandro Onrubia
  • Manuela De Lucas
  • Miguel Ferrer
Original Article


Collision with turbines at wind farms is expected to have a greater impact on birds at particular sites where high concentrations of individuals occur, such as migration bottleneck areas. The Strait of Gibraltar (southern Spain) has long been recognized as the most important bottleneck in western Europe for soaring bird migration. Moreover, this area is within one of the most important potential areas for wind energy generation in Spain. Here, we examine monthly migratory soaring bird abundance in relation to long-term avian mortality rates at 21 wind farms located near the Strait of Gibraltar using zero-inflated hurdle negative binomial and gamma models. Best fit models included an effect of season in the collision mortality rates and in the proportion of adult individuals within the total deaths. However, monthly bird abundance was not directly related to the number of fatalities over the year. The accumulated fatalities during autumn migration constitute a small percentage (1%) of the total migrating population size. Moreover, mortality peak during autumn migration is largely attributable to juvenile birds. In contrast, the number of fatalities coinciding with the breeding period constitutes a substantial proportion (6%) of the local population, and it involved substantial losses among adult birds. Our results show that wind farms probably have an individually low impact on the migratory population of soaring birds. On the contrary, annual losses among adult local birds are remarkably high considering the small size of the local populations, and they may have population level effects.


Abundance Autumn migration Breeding population Migratory population Raptors Spring migration Storks Turbines 



We are grateful to the thousands of people (volunteers and staff) who collected the information presented in this study as well as to the Board of the Migres Foundation. The data set used in the analysis were provided by the Department of Cadiz of the Andalusian Environmental Ministry in the wind resource areas, and comprises records of dead birds collected during research studies and by maintenance personnel at the farms. We would also like to thank C. Torralvo and M. Gonzalez for their help in estimating local bird abundance within the study area. Many thanks, too, for R. A. Miller for his revision of the draft of this manuscript as well as for the editor and the anonymous referees for providing us with comments and suggestions that greatly helped to improve the manuscript.

Funding information

This research was carried out within the funding framework of the Wind Association of Tarifa (Asociación Eólica de Tarifa, AET). The data counts from the Strait of Gibraltar analyzed in the study were collected within the field monitoring campaigns 1999/2012 funded by grants of the Consejería de Medio Ambiente from the Junta de Andalucía (Spain).

Supplementary material

10344_2018_1192_MOESM1_ESM.docx (68 kb)
ESM 1 (DOCX 68 kb)


  1. Akaike H (1973) Information theory and an extension of the maximum likelihood principle. In: Petrov B, Caski F (eds) Proceedings of the second international symposium on information theory. Akademiaiai Kiado, Budapest, pp 267–281Google Scholar
  2. Anderson SC (2014) Gamma Hurdle Models.
  3. Arnett EB (2005) Relations between bats and wind turbines in Pennsylvania and West Virginia: an assessment of bat fatality search protocols, patterns of fatality, and behavioral interactions with wind turbines. Bat Conservation International, AustinGoogle Scholar
  4. Arnett EB, Inkley DB, Larkin RP et al (2007) Impacts of wind energy facilities on wildlife and wildlife habitat. Wildl Soc Tech Rev 7:1–50Google Scholar
  5. Arnett EB, Brown WK, Erickson WP, Fiedler JK, Hamilton BL, Henry TH, Jain A, Johnson GD, Kerns J, Koford RR, Nicholson CP, O'Connell TJ, Piorkowski MD, Tankersley RD JR (2008) Patterns of bat fatalities at wind energy facilities in North America. J Wildl Manag 72:61–78.
  6. Arnett E, Huso M, Schirmacher M, Hayes JP (2011) Altering turbine speed reduces bat mortality at windenergy facilities. Front Ecol Environ 9(4):209–214CrossRefGoogle Scholar
  7. Atienza JC, Martín Fierro I, Infante O, Valls J, Domínguez J (2011) Guidelines for Assessing the Impact of Wind Farms on Birds and bats (version 4.0). SEO/BirdLife, MadridGoogle Scholar
  8. Baerwald EF, Barclay RMR (2011) Patterns of activity and fatality of migratory bats at a wind energy facility in Alberta, Canada. J Wildl Manag 75:1103–1114. CrossRefGoogle Scholar
  9. Barrios L, Doval G (2007) El Programa Migres de aves planeadoras. Datos actualizados a los años 2005 y 2006. Almoraima 35:77–85Google Scholar
  10. Barrios L, Rodríguez A (2004) Behavioural and environmental correlates of soaring-bird mortality at on-shore wind turbines. J Appl Ecol 41:72–81. CrossRefGoogle Scholar
  11. Bates D, Martin M (2015) Fitting linear mixed-effects models using lme4. J Stat Softw 67(1):1–48CrossRefGoogle Scholar
  12. Bauer H-G, Bezzel E, Fiedler W (2005) Das Kompendium der Vögel Mitteleuropas, vol 3. Aula, WiebelsheimGoogle Scholar
  13. Bernis F (1980) La Migración de las aves en el Estrecho de Gibraltar (Epoca Posnupcial). Vol.1. Aves Planeadoras. Universidad Complutense, MadridGoogle Scholar
  14. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  15. Carrete M, Sánchez-Zapata JA, Benítez JR, Lobón M, Donázar JA (2009) Large scale risk-assessment of wind-farms on population viability of a globally endangered long-lived raptor. Biol Conserv 142:2954–2961. CrossRefGoogle Scholar
  16. Crivelli AJ, Jerrentrup H (1988) Mitchev T electric power lines: a cause of mortality in Pelecanus crispus Bruch, a world endangered species, in Porto-Lago, Greece. Colonial Waterbird 11:301–305CrossRefGoogle Scholar
  17. De Lucas M, Janss GE, Ferrer M (2004) The effects of a wind farm on birds in a migration point: the strait of Gibraltar. Biodivers Conserv 13:395–407. CrossRefGoogle Scholar
  18. De Lucas M, Guyonne F, Ferrer M (eds) (2007) Birds and wind farms: risk assessment and mitigation. Quercus, MadridGoogle Scholar
  19. De Lucas M, Janss GFE, Whitfield DP, Ferrer M (2008) Collision fatality of raptors in wind farms does not depend on raptor abundance. J Appl Ecol 45:1695–1703. CrossRefGoogle Scholar
  20. De Lucas M, Ferrer M, Bechard MJ, Muñoz AR (2012) Griffon vulture mortality at wind farms in southern Spain: distribution of fatalities and active mitigation measures. Biol Conserv 147:184–189. CrossRefGoogle Scholar
  21. Desholm M (2009) Avian sensitivity to mortality: prioritising migratory bird species for assessment at proposed wind farms. J Environ Manag 90:2672–2679. CrossRefGoogle Scholar
  22. Drewitt AL, Langston RHW (2008) Collision effects of wind-power generators and other obstacles on birds. Ann N Y Acad Sci 1134:233–266. CrossRefPubMedGoogle Scholar
  23. Ferrer M, de Lucas M, Janss GFE, Casado E, Muñoz AR, Bechard MJ, Calabuig CP (2012) Weak relationship between risk assessment studies and recorded mortality in wind farms. J Appl Ecol 49:38–46. CrossRefGoogle Scholar
  24. Finlayson JC (1992) Birds of the Strait of Gibraltar. Academic Press (T & A D Poyser), LondonGoogle Scholar
  25. Hernández-Pliego J, de Lucas M, Muñoz A-R, Ferrer M (2015) Effects of wind farms on Montagu’s harrier (Circus pygargus) in southern Spain. Biol Conserv 191:452–458. CrossRefGoogle Scholar
  26. Horn JW, Arnett EB, Kunz TH (2008) Behavioral responses of bats to operating wind turbines. J Wildl Manag 72:123–132. CrossRefGoogle Scholar
  27. IDAE (1992) Manual de energía eólica. Cuadernos de Energías Renovables 4. Instituto para la Diversificación y Ahorro de la Energía, MadridGoogle Scholar
  28. INM (1988) Mapa eólico nacional. Instituto Nacional de Meteorología, MadridGoogle Scholar
  29. Janss G FE (2000) Avian mortality from power lines: a morphologic approach of a species-specific mortalityGoogle Scholar
  30. Kunz TH, Arnett EB, Erickson WP, Hoar AR, Johnson GD, Larkin RP, Strickland MD, Thresher RW, Tuttle MD (2007) Ecological impacts of wind energy development on bats: questions, research needs, and hypotheses. Front Ecol Environ 5:315–324.[315:EIOWED]2.0.CO;2Google Scholar
  31. Kuvlesky WP, Brennan LA, Morrison ML et al (2007) Wind energy development and wildlife conservation: challenges and opportunities. J Wildl Manag 71:2487–2498. CrossRefGoogle Scholar
  32. Larsen JK, Guillemette M (2007) Effects of wind turbines on flight behaviour of wintering common eiders: implications for habitat use and collision risk. J Appl Ecol 44:516–522. CrossRefGoogle Scholar
  33. Lekuona J, Ursúa C (2007) Avian mortality in wind power plants of Navarra (northern Spain). In: De Lucas M, Guyonne F, Ferrer M (eds) Birds and wind farms: risk assessment and mitigation. Quercus, MadridGoogle Scholar
  34. Loss SR, Will T, Marra PP (2013) Estimates of bird collision mortality at wind facilities in the contiguous United States. Biol Conserv 168:201–209. CrossRefGoogle Scholar
  35. Madroño A, González C, Atienza JC (2004) Libro rojo de las aves de España. SEO/BirdLife, MadridGoogle Scholar
  36. Martí R, Moral JC (2003) Atlas de las Aves Reproductoras de España. Dirección General de Conservación de la Naturaleza-Sociedad Española de Ornitología, MadridGoogle Scholar
  37. Martínez-Abraín A, Tavecchia G, Regan HM, Jiménez J, Surroca M, Oro D (2012) Effects of wind farms and food scarcity on a large scavenging bird species following an epidemic of bovine spongiform encephalopathy. J Appl Ecol 49:109–117. CrossRefGoogle Scholar
  38. Mathiasson S (1999) Swans and electrical wires, mainly in Sweden. In: De Lucas M, Guyonne F, Ferrer M (eds) Birds and power lines; collision, electrocution and breeding. Servicios Informativos Ambientales/Quercus, Madrid, pp 83–111Google Scholar
  39. McNeil R, JRR S, Ouellet H (1985) Bird mortality at a power transmission line in northeastern Venezuela. Biol Conserv 31:153–165. CrossRefGoogle Scholar
  40. Mebs T, Schmidt D (2006) Die Greifvögel Europas, Nordafrikas und Vorderasiens. Biologie, Kennezeichen, Bestände. Franckh-Kosmos Verlag, StuttgartGoogle Scholar
  41. Miller RA, Onrubia A, Martin B, et al (2015) Local and regional weather patterns influencing post-breeding migration counts of soaring birds at the Strait of Gibraltar, SpainGoogle Scholar
  42. Molina B, Del Moral JC (2005) La Cigüeña Blanca en España. VI Censo Internacional (2004). SEO/BirdLife, MadridGoogle Scholar
  43. Newton I (1979) Population ecology of raptors. T & AD Poyser, LondonGoogle Scholar
  44. Newton I (2008) The migration ecology of birds. Academic Press, LondonGoogle Scholar
  45. NWCC (2010) Wind turbine interactions with birds, bats, and their habitats: a summary of research results and priority questions. National Wind Coordinating Collaborative,
  46. Peery MZ (2000) Factors affecting interspecies variation in home-range size. Auk 117(2):511–517CrossRefGoogle Scholar
  47. Porter R, Beaman M (1985) A resume of raptor migration in Europe and the Middle East. ICBP Tech Publ 5:237–242Google Scholar
  48. Programa MIGRES (2009) Seguimiento de la migración de las aves en el estrecho de Gibraltar: resultados del Programa Migres 2008. Migres 1:1–19Google Scholar
  49. Pruett CL, Patten MA, Wolfe DH (2009) Avoidance behavior by prairie grouse: implications for development of wind energy. Conserv Biol 23:1253–1259. CrossRefPubMedGoogle Scholar
  50. R Development Core Team (2011) R: a language and environment for statistical computing. The R Foundation for Statistical Computing, VienaGoogle Scholar
  51. Saether B-E, Bakke O (2000) Avian life history variation and contribution of demographic traits to the population growth rate. Ecology 81:642–653. CrossRefGoogle Scholar
  52. Savereno AJ, Savereno LA, Boettcher R, Haig S (1996) Avian behavior and mortality at power lines in coastal South Carolina. Wildl Soc Bull 24:636–648Google Scholar
  53. SEO/BirdLife (2012) Atlas de las aves en invierno en España 2007-2010. Ministerio de Agricultura, Alimentación y Medio Ambiente-SEO/Birdlife, MadridGoogle Scholar
  54. SEO/BirdLife (2014) III Atlas de aves en época reproductora en España 2014-2017.
  55. Stewart GB, Pullin AS, Coles CF (2007) Poor evidence-base for assessment of windfarm impacts on birds. Environ Conserv 34:1–11. CrossRefGoogle Scholar
  56. Tellería JL (2009) Potential impacts of wind farms on migratory birds crossing Spain. Bird Conserv Int 19:131–136. CrossRefGoogle Scholar
  57. US Fish, Wildlife Service (USFWS) (2012) Land-Based Wind Energy Guidelines. 82 ppGoogle Scholar
  58. Zalles J, Bildstein K (2000) Raptor watch: a global directory of raptor migration sites. BirdLife International & Hawk Mountain Sactuary, CambridgeGoogle Scholar
  59. Zuur A, Ieno EN, Walker N et al (2009) Mixed effects models and extensions in ecology with R. Springer-Verlag, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Beatriz Martín
    • 1
    • 2
  • Coline Perez-Bacalu
    • 1
  • Alejandro Onrubia
    • 1
  • Manuela De Lucas
    • 3
  • Miguel Ferrer
    • 3
  1. 1.Fundación Migres CIMA CtraCádizSpain
  2. 2.Intergovernmental Oceanographic Commission of UNESCOMarine Policy and Regional Coordination SectionParis 07France
  3. 3.Ethology and Biodiversity Conservation, Doñana Biological StationCSICSevilleSpain

Personalised recommendations