Long-term changes of small mammal communities in heterogenous landscapes of Central Europe

  • Markéta Zárybnická
  • Jan Riegert
  • Vladimír Bejček
  • František Sedláček
  • Karel Šťastný
  • Jiří Šindelář
  • Marta Heroldová
  • Jitka Vilímová
  • Jan Zima
Original Article


Long-term dynamics of small mammal communities are perennial themes in population ecology. However, comprehensive studies on the effect of environmental factors on population dynamics are still rare. Here, we aimed to analyze long-term data on Central European communities of small mammals occurring in two habitats that greatly differed in their structure, successional stages, and forest management. We found a richer community structure in young spruce plantations compared to mature European beech forests. In young spruce plantations, Myodes glareolus and Apodemus flavicollis abundances increased and Sorex araneus abundances decreased during the study period as a result of forest growth and management. Community structure in mature beech forests did not change significantly during the study period. Apodemus flavicollis and Myodes glareolus showed 3- and 5-year population cycles, respectively, and their abundances were simultaneously positively correlated with relative abundance of masts. Weather also played a role, while the effect of snow cover was pronounced only in mountain areas where it negatively affected Microtus agrestis and Sorex araneus abundances, temperature positively and rainfall negatively influenced Myodes glareolus and Apodemus flavicollis abundances across both studied habitats. Our findings document that a complex of environmental factors significantly affects the structure and dynamics of small mammal communities in Central Europe, and both local biotic and abiotic factors should be considered in future studies.


Habitat diversity Population dynamics Community structure Small mammal Temperate area Weather Masting 



This study is dedicated to Jan Zejda, the distinguished Czech mammalogist. We are grateful to many colleagues for their field assistance, in particular P. Šímová, P. A. Málková, and V. Dvořák. This study was supported by the Czech University of Life Sciences Prague (CIGA No. 20164202, IGA No. 20164215).

Compliance with ethical standards

The research was carried out in accordance with ethical standards following the Act No. 246/1992 Coll. on the protection of animals against cruelty, and it was approved by the Ministry of the Environment of the Czech Republic (71735/ENV/16-3580/630/16).

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. Berryman A (2002) Population cycles: causes and analysis. Oxford Univ. Press, OxfordGoogle Scholar
  2. Bilodeau F, Gauthier G, Berteaux D (2013) Effect of snow cover on the vulnerability of lemmings to mammalian predators in the Canadian Arctic. J Mammal 94(4):813–819CrossRefGoogle Scholar
  3. Bollinger EK (1995) Successional changes and habitat selection in hayfield bird communities. Auk 112(3):720–730Google Scholar
  4. Briani DC, Palma ART, Vieira EM, Henriques RPB (2004) Post-fire succession of small mammals in the Cerrado of central Brazil. Biodivers Conserv 13(5):1023–1037CrossRefGoogle Scholar
  5. Bujalska G, Grüm L (2008) Interaction between populations of the bank vole and the yellow-necked mouse. Ann Zool Fenn 45(4):248–254CrossRefGoogle Scholar
  6. Bujalska G, Grüm L, Lukyanova LE, Vasil'ev A (2009) Spatial interrelations between bank voles and yellow-necked mice in Crabapple Island. Russ J Ecol 40(7):522–528CrossRefGoogle Scholar
  7. Cornulier T, Yoccoz NG, Bretagnolle V et al (2013) Europe-wide dampening of population cycles in keystone herbivores. Science 340(6128):63–66CrossRefPubMedGoogle Scholar
  8. Daniels RJR, Joshi NV, Gadgil M (1992) On the relationship between bird and woody plan-species diversity in the Uttara Kannada district of south India. PNAS 89(12):5311–5315CrossRefPubMedPubMedCentralGoogle Scholar
  9. Finch DM (1989) Habitat use and habitat overlap of riparian birds in three elevational zones. Ecology 70(4):866–880CrossRefGoogle Scholar
  10. Gill RMA (1992) A review of damage by mammals in north temperature forests. 1 Deer. Forestry 65(2):145–169CrossRefGoogle Scholar
  11. Gouveia A, Bejček V, Flousek J et al (2015) Long-term pattern of population dynamics in the field vole from central Europe: cyclic pattern with amplitude dampening. Popul Ecol 57(4):581–589Google Scholar
  12. Grüm L, Bujalska G (2000) Bank voles and yellow-necked mice: what are interrelations between them? Polish. J Ecol 48:141–145Google Scholar
  13. Haapakoski M, Ylönen H (2013) Snow evens fragmentation effects and food determines overwintering success in ground-dwelling voles. Ecol Res 28(2):307–315Google Scholar
  14. Hanski I, Hansson L, Henttonen H (1991) Specialist predators, generalist predators, and the microtine rodent cycle. J Anim Ecol 60(1):353–367CrossRefGoogle Scholar
  15. Hanski I, Henttonen H, Korpimäki E, Oksanen L, Turchin P (2001) Small-rodent dynamics and predation. Ecology 82(6):1505–1520Google Scholar
  16. Hansson L, Henttonen H (1985) Gradients in density variations of small rodents: the importance of latitude and snow cover. Oecologia 67:394–402CrossRefPubMedGoogle Scholar
  17. Hille SM, Rödel HG (2014) Small-scale altitudinal effects on reproduction in bank voles. Mammal. Biol 79(2):90–95Google Scholar
  18. Huitu O, Kiljunen N, Korpimäki E et al (2009) Density-dependent vole damage in silviculture and associated economic losses at a nationwide scale. Forest Ecol Manag 258(7):1219–1224CrossRefGoogle Scholar
  19. Koenig WD, Knops JMH (2005) The mystery of masting in trees. Am Sci 93(4):340–347CrossRefGoogle Scholar
  20. Kopáček J, Veselý J (2005) Sulfur and nitrogen emissions in the Czech Republic and Slovakia from 1850 till 2000. Atmos Environ 39(12):2179–2188CrossRefGoogle Scholar
  21. Korpela K, Helle P, Henttonen H et al (2014) Predator-vole interactions in northern Europe: the role of small mustelids revised. Proc R Soc B-Biol Sci 281(1797)Google Scholar
  22. Korpimäki E (1986) Predation causing synchronous decline phases in microtine and shrew populations in western Finland. Oikos 46:124–127CrossRefGoogle Scholar
  23. Korpimäki E, Norrdahl K, Klemola T, Pettersen T, Stenseth NC (2002) Dynamic effects of predators on cyclic voles: field experimentation and model extrapolation. Proc R Soc B-Biol Sci 269(1495):991–997CrossRefGoogle Scholar
  24. Korpimäki E, Oksanen L, Oksanen T, Klemola T, Norrdahl K, Banks PB (2005) Vole cycles and predation in temperate and boreal zones of Europe. J Anim Ecol 74(6):1150–1159CrossRefGoogle Scholar
  25. Korslund L, Steen H (2006) Small rodent winter survival: snow conditions limit access to food resources. J Anim Ecol 75(1):156–166CrossRefPubMedGoogle Scholar
  26. Krebs CJ (2009) Ecology. Benjamin Cummings, San FranciscoGoogle Scholar
  27. Krebs CJ (2013) Population fluctuations in rodents. Univ. Chicago Press, ChicagoCrossRefGoogle Scholar
  28. Krojerová-Prokešová J, Homolka M, Barančeková M et al (2016) Structure of small mammal communities on clearings in managed Central European forests. Forest Ecol Manag 367:41–51CrossRefGoogle Scholar
  29. Lyly M, Klemola T, Koivisto E, Huitu O, Oksanen L, Korpimäki E (2014) Varying impacts of cervid, hare and vole browsing on growth and survival of boreal tree seedlings. Oecologia 174(1):271–281Google Scholar
  30. Macarthur R, Macarthur JW (1961) On bird species diversity. Ecology 42(3):594–598CrossRefGoogle Scholar
  31. Newton I (1979) Population ecology of raptors. Poyser, BerkhamstedGoogle Scholar
  32. Niethammer J, Krapp F (1978) Handbuch der Säugetiere Europas. Band 1. Rodentia I. (Sciuridae, Castoridae, Gliridae, Muridae). Akademisches Verlagsges, WiesbadenGoogle Scholar
  33. Niethammer J, Krapp F (1982) Handbuch der Säugetiere Europas. Band 2. Rodentia II. (Cricetidae, Arvicolidae, Zapodidae, Spalacidae, Hystricidae, Capromyidae). Akademisches Verlagsges, WiesbadenGoogle Scholar
  34. Pelikán J (1975) On the standardization of the trapping quadrat and line for estimating the population density of small mammals in forests. Lynx(17):58–71Google Scholar
  35. Piovesan G, Adams JM (2001) Masting behaviour in beech: linking reproduction and climatic variation. Can J Bot 79(9):1039–1047Google Scholar
  36. Pucek Z, Jedrzejewski W, Jedrzejewska B, Pucek M (1993) Rodent population-dynamics in a primeval deciduous forest (Bialowieza national park) in relation to weather, seed crop, and predation. Acta Theriol 38(2):199–232CrossRefGoogle Scholar
  37. Reil D, Imholt C, Eccard JA, Jacob J (2015) Beech fructification and bank vole population dynamics - combined analyses of promoters of human puumala virus infections in Germany. PLoS One 10(7)Google Scholar
  38. Sipari S (2015) Overwintering strategies of a boreal small mammal in a changing climate. Univ. Jyvälskylä, JyväskyläGoogle Scholar
  39. Sozio G, Mortelliti A (2016) Empirical evaluation of the strength of interspecific competition in shaping small mammal communities in fragmented landscapes. Land Ecol 31(4):775–789CrossRefGoogle Scholar
  40. StatSoft I (2013) Statistica (data analysis software system), version 12. http://www.statsoft.com
  41. Sucharová J, Suchara I (1998) Atmospheric deposition levels of chosen elements in the Czech Republic determined in the framework of the international Bryomonitoring program 1995. Sci Total Environ 223(1):37–52CrossRefPubMedGoogle Scholar
  42. Sundell J, Church C, Ovaskainen O (2012) Spatio-temporal patterns of habitat use in voles and shrews modified by density, season and predators. J Anim Ecol 81(4):747–755CrossRefPubMedGoogle Scholar
  43. Tattersall FH, Macdonald DW, Hart BJ, Johnson P, Manley W, Feber R (2002) Is habitat linearity important for small mammal communities on farmland? J Appl Ecol 39(4):643–652CrossRefGoogle Scholar
  44. ter Braak C, Šmilauer P (2012) Canoco reference manual and user’s guide: software for ordination, version 5.0. Microcom. Power, IthacaGoogle Scholar
  45. Tkadlec E, Stenseth NC (2001) A new geographical gradient in vole population dynamics. Proc R Soc B-Biol Sci 268(1476):1547–1552CrossRefGoogle Scholar
  46. Willig MR, Kaufman DM, Stevens RD (2003) Latitudinal gradients of biodiversity: pattern, process, scale, and synthesis. Annu Rev Ecol Evol Syst 34:273–309CrossRefGoogle Scholar
  47. Ylönen H, Altner HJ, Stubbe M (1991) Seasonal dynamics of small mammals in an isolated woodlot and its agricultural surroundings. Ann Zool Fenn 28(1):7–14Google Scholar
  48. Zárybnická M, Riegert J, Kouba M (2015a) Indirect food web interactions affect predation of Tengmalm’s Owls Aegolius funereus nests by Pine Martens Martes martes according to the alternative prey hypothesis. Ibis 157(3):459–467CrossRefGoogle Scholar
  49. Zárybnická M, Riegert J, Šťastný K (2013) The role of Apodemus mice and Microtus voles in the diet of the Tengmalm’s owl in Central Europe. Popul Ecol 55(2):353–361CrossRefGoogle Scholar
  50. Zárybnická M, Riegert J, Šťastný K (2015b) Non-native spruce plantations represent a suitable habitat for Tengmalm’s Owl (Aegolius funereus) in the Czech Republic, Central Europe. J Orn 156(2):457–468CrossRefGoogle Scholar
  51. Zárybnická M, Sedláček O, Salo P, Šťastný K, Korpimäki E (2015c) Reproductive responses of temperate and boreal Tengmalm’s Owl Aegolius funereus populations to spatial and temporal variation in prey availability. Ibis 157(2):369–383CrossRefGoogle Scholar
  52. Zub K, Jedrzejewska B, Jedrzejewski W, Barton KA (2012) Cyclic voles and shrews and non-cyclic mice in a marginal grassland within European temperate forest. Acta Theriol 57(3):205–216CrossRefPubMedPubMedCentralGoogle Scholar
  53. Zwolak R, Bogdziewicz M, Rychlik L (2016) Beech masting modifies the response of rodents to forest management. Forest Ecol Manag 359:268–276CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Markéta Zárybnická
    • 1
  • Jan Riegert
    • 2
  • Vladimír Bejček
    • 1
  • František Sedláček
    • 2
  • Karel Šťastný
    • 1
  • Jiří Šindelář
    • 1
  • Marta Heroldová
    • 3
  • Jitka Vilímová
    • 4
  • Jan Zima
    • 5
  1. 1.Faculty of Environmental SciencesCzech University of Life Sciences PraguePragueCzech Republic
  2. 2.Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
  3. 3.Faculty of Forestry and Wood TechnologyMendel University in BrnoBrnoCzech Republic
  4. 4.Faculty of ScienceCharles UniversityPragueCzech Republic
  5. 5.Institute of Vertebrate Biology, Czech Academy of SciencesBrnoCzech Republic

Personalised recommendations