Advertisement

Top-down and bottom-up control on cougar and its prey in a central Mexican natural reserve

  • Leroy Soria-Díaz
  • Mike S. Fowler
  • Octavio Monroy-Vilchis
Original Article

Abstract

Top-down and bottom-up controls are hypothesized to regulate population structures in many ecosystems. However, few studies have had the opportunity to analyze both processes in the natural environment, especially on large carnivores like the cougar (Puma concolor). Previously, studies show that cougar diet in the Sierra Nanchititla Natural Reserve (SNNR), central Mexico, is mainly armadillo, coati, and white-tailed deer. We assess whether top-down and/or bottom-up control regulate this endangered food web: (a) we predicted that seasonal per capita changes in abundance (pca) of cougar will be positively affected by the abundance of their main prey; (b) primary productivity in SNNR will affect the pca of prey species, driving bottom-up control; and (c) armadillo, coati, and white-tailed deer pca will be affected by the abundance of cougar, generating top-down control. Using 15 camera traps for 6 years in the SNNR, we calculated a relative abundance index (RAI) and pca for cougar and each of the focal prey, and we used the normalized difference vegetation index (NDVI) as a proxy of primary productivity. We constructed multiple regression models and selected the best linear models based on ranking the AICc values. Our analysis suggests that P. concolor pca is best explained by bottom-up control and intraspecific feedback. White-tailed deer and armadillo pca were both significantly affected by cougar abundance, indicating top-down control for these prey species, but NDVI was not retained in any of the models selected for prey pca. Our results indicate that both bottom-up and top-down control are involved in regulating this endangered food web in the SNNR, Mexico.

Keywords

Competition Food web Mexico NDVI Predator-prey Species interactions 

Notes

Acknowledgements

We would like to thank the Mexican institutions that supported the study with funding (CONACYT-101254), scholarship (LSD-214042), and COMECYT; the Comisión Estatal de Parques Naturales y de la Fauna (CEPANAF) who let us work in the Sierra Nanchititla Natural Reserve; local residents; and Dr. Christian Javier Vázquez (ITCV).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10344_2017_1129_MOESM1_ESM.docx (580 kb)
ESM 1 (DOCX 579 kb)
10344_2017_1129_MOESM2_ESM.docx (26 kb)
ESM 2 (DOCX 25 kb)

References

  1. Aguilera-Reyes U, Sánchez-Cordero V, Ramírez-Pulido J, Monroy-Vilchis O, García López GI, Janczur M (2013) Hábitos alimentarios del venado cola blanca Odocoileus virginianus (Artiodactyla: Cervidae) en el Parque Natural Sierra Nanchititla, Estado de México. Rev Biol Trop 61:243–253CrossRefPubMedGoogle Scholar
  2. Alves LCP, Andriolo A (2005) Camera traps used on the mastofaunal survey of Araras biological reserve, IEF-RJ. Rev Bras Zoo Juiz de fora 7:231–246Google Scholar
  3. Bowyer RT, Person DK, Pierce BM (2005) Detecting top-down versus bottom-up regulation of ungulates by large carnivores: implications for conservation of biodiversity. In: Ray JC, Redford KH, Steneck RS, Berger J (eds) Large carnivores and the conservation of biodiversity. Island Press Washington, Covedo and London, pp 342–361Google Scholar
  4. Boyer AG, Swearingen RE, Blaha MA, Fortson CT, Gremillion SK, Osborn KA, Moran MD (2003) Seasonal variation in top-down and bottom-up processes in a grassland arthropod community. Oecologia 136:309–316CrossRefPubMedGoogle Scholar
  5. Breheny P, Burchett W (2017) visreg: visualization of regression models. R package version 2.4–0. https://CRAN.R-project.org/package=visreg
  6. Brose U (2003) Bottom-up control of carabid beetle communities in early successional wetlands: mediated by vegetation structure or plant diversity? Oecologia 135:407–413CrossRefPubMedGoogle Scholar
  7. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach. Springer, New YorkGoogle Scholar
  8. Dawes-Gromadzki TZ (2002) Trophic trickles rather than cascades: conditional top-down and bottom-up dynamics in an Australian chenopod shrubland. Austral Ecol 27:490–508CrossRefGoogle Scholar
  9. Denno RF, Gratton C, Peterson MA, Langellotto GA, Finke DL, Huberty AF (2002) Bottom-up forces mediate natural-enemy impact in a phytophagous insect community. Ecology 83:1443–1458CrossRefGoogle Scholar
  10. Dyer LA, Letourneau D (2003) Top-down and bottom-up diversity cascades in detrital vs. living food webs. Ecol Lett 6:60–68CrossRefGoogle Scholar
  11. Elmhagen B, Rushton SP (2007) Trophic control of mesopredators in terrestrial ecosystems: top-down or bottom-up? Ecol Lett 10:197–206CrossRefPubMedGoogle Scholar
  12. Foster RJ, Harmsen BJ (2012) A critique of density estimation from camera-trap data. J Wildl Manag 76:224–236. doi: 10.1002/jwmg.275 CrossRefGoogle Scholar
  13. Gandiwa E (2013) Top-down and bottom-up control of large herbivore populations: a review of natural and human-induced influences. Trop Conserv Sci 6:493–505CrossRefGoogle Scholar
  14. Gasaway WC, Boertje RD, Grangaard DV, Kelleyhouse DG, Stephenson RO, Larsen DG (1992) The role of predation in limiting moose at low densities in Alaska and Yukon and implications for conservation Wildl Monogr:3–59Google Scholar
  15. Gittleman JL, Funk SM, Macdonald D, Wayne RK (2001) Carnivore conservation. Cambridge University, LondonGoogle Scholar
  16. Gómez-Ortiz Y, Monroy-Vilchis O, Fajardo V, Mendoza GD, Urios V (2011) Is food quality important for carnivores? The case of Puma concolor. Anim Biol 61:277–288CrossRefGoogle Scholar
  17. Grange S, Duncan P (2006) Bottom-up and top-down processes in African ungulate communities: resources and predation acting on the relative abundance of zebra and grazing bovids. Ecography 29:899–907. doi: 10.1111/j.2006.0906-7590.04684.x CrossRefGoogle Scholar
  18. Gratton C, Denno RF (2003) Seasonal shift from bottom-up to top-down impact in phytophagous insect populations. Oecologia 134:487–495CrossRefPubMedGoogle Scholar
  19. Gruner DS (2004) Attenuation of top-down and bottom-up forces in a complex terrestrial community. Ecology 85:3010–3022CrossRefGoogle Scholar
  20. Hamel S, Killengreen ST, Henden JA, Eide NE, Roed-Eriksen L, Ims RA, Yoccoz NG (2013) Towards good practice guidance in using camera-traps in ecology: influence of sampling design on validity of ecological inferences. Methods Ecol Evol 4:105–113. doi: 10.1111/j.2041-210x.2012.00262 CrossRefGoogle Scholar
  21. Harmsen BJ, Foster RJ, Silver S, Ostro L, Doncaster CP (2010) Differential use of trails by forest mammals and the implications for camera-trap studies: a case study from Belize. Biotropica 42:126–133. doi: 10.1111/j.1744-7429.2009.00544.x CrossRefGoogle Scholar
  22. Horppila J, Peltonen H, Malinen T, Luokkanen E, Kairesalo T (1998) Top-down or bottom-up effects by fish: issues of concern in biomanipulation of lakes. Restor Ecol 6:20–28CrossRefGoogle Scholar
  23. Hunter MD, Varley GC, Gradwell GR (1997) Estimating the relative roles of top-down and bottom-up forces on insect herbivore populations: a classic study revisited. Proc Natl Acad Sci U S A 94:9176–9181CrossRefPubMedPubMedCentralGoogle Scholar
  24. Huryn AD (1998) Ecosystem-level evidence for top-down and bottom-up control of production in a grassland stream system. Oecologia 115:173–183CrossRefPubMedGoogle Scholar
  25. Jiang L, Morin PJ (2005) Predator diet breadth influences the relative importance of bottom-up and top-down control of prey biomass and diversity. Am Nat 165:350–363PubMedGoogle Scholar
  26. Keeler MS, Chew FS, Goodale BC, Reed JM (2006) Modelling the impacts of two exotic invasive species on a native butterfly: top-down vs. bottom-up effects. J Anim Ecol 75:777–788CrossRefPubMedGoogle Scholar
  27. Lassau SA, Hochuli DF (2008) Testing predictions of beetle community patterns derived empirically using remote sensing Diversity and Distributions 14:138–147 doi: 10.1111/j.1472-4642.2007.00438.x
  28. Lindeman RL (1942) The trophic-dynamic aspect of ecology. Ecology 23:399–417CrossRefGoogle Scholar
  29. Logan K, Sweanor L (2001) Desert puma evolutionary ecology and conservation of an enduring carnivore. Island Press, WashingtonGoogle Scholar
  30. Marchinton LR, Hirth D (1984) Behavior. In: Halls LK (ed) White tailed deer ecology and management. Stackpole Books, Harrisburg, pp 129–168Google Scholar
  31. Mazerolle MJ (2016) AICcmodavg: model selection and multimodel inference based on (Q)AIC(c). R package version 2.0–4. http://CRAN.R-project.org/package=AICcmodavg
  32. McBee K, Baker RJ (1982) Dasypus novemcinctus. Mammal Species 162:1–9CrossRefGoogle Scholar
  33. Mduma SA, Sinclair A, Hilborn R (1999) Food regulates the Serengeti wildebeest: a 40-year record. J Anim Ecol 68:1101–1122CrossRefGoogle Scholar
  34. Menge BA (2000) Top-down and bottom-up community regulation in marine rocky intertidal habitats. J Exp Mar Biol Ecol 250:257–289CrossRefPubMedGoogle Scholar
  35. Meserve PL, Kelt DA, Milstead WB, Gutierrez JR (2003) Thirteen years of shifting top-down and bottom-up control. Bioscience 53:633–646CrossRefGoogle Scholar
  36. Monroy-Vilchis O, Balderas MA, Rubio R, Castro JA, Rodríguez-Soto C, Zarco-González MM, Soria-Díaz L, De Luna O, Aguilera-Reyes U (2011a) Programa de conservación y manejo del Parque Natural Sierra Nanchititla, 1ª edn. Universidad Autónoma del Estado de México, MéxicoGoogle Scholar
  37. Monroy-Vilchis O, Gómez Y, Janczur M, Urios V (2009a) Food niche of Puma concolor in Central Mexico. Wild Biol 15:97–105. doi: 10.2981/07-054 CrossRefGoogle Scholar
  38. Monroy-Vilchis O, Rodríguez-Soto C, Zarco-González M, Urios V (2009b) Cougar and jaguar habitat use and activity patterns in central Mexico. Anim Biol 59:145–157. doi: 10.1163/157075609X437673 CrossRefGoogle Scholar
  39. Monroy-Vilchis O, Sánchez Ó, Aguilera-Reyes U, Suárez P, Urios V (2008) Jaguar (Panthera onca) in the state of Mexico. Southwest Nat 53:533–537. doi: 10.1894/CJ-144.1 CrossRefGoogle Scholar
  40. Monroy-Vilchis O, Zarco-González MM, Rodríguez-Soto C, Soria-Díaz L, Urios V (2011b) Fototrampeo de mamíferos en la Sierra Nanchititla, México: abundancia relativa y patrón de actividad. Rev Biol Trop 59:373–383PubMedGoogle Scholar
  41. Núñez R, Miller B, Lindzey F (2002) Ecología del jaguar en la Reserva de la Biosfera ChamelaCuixmala, Jalisco, México. In: Medellín R, Equihua C, Chetkiewics C, Crawshaw P, Robinowitz A, Redford K, Robinson J, Sanderson E, Taber A (Comps.) El jaguar en el nuevo milenio. Fondo de la cultura económica, México Distrito Federal, pp 107-126Google Scholar
  42. Novaro AJ, Walker RS (2005) Human-induced changes in the effect of top carnivores on biodiversity in the Patagonian steppe. In: Ray JC, Redford KH, Steneck RS, Berger J (eds) Large carnivores and the conservation of biodiversity. Island Press, Washington Covedo and London, pp 268–288Google Scholar
  43. O’Brien TG, Kinnaird MF, Wibisono HT (2003) Crouching tigers, hidden prey: Sumatran tiger and prey populations in a tropical forest landscape. Anim Conserv 6:131–139. doi: 10.1017/S1367943003003172 CrossRefGoogle Scholar
  44. Oindo BO (2002) Predicting mammal species richness and abundance using multi-temporal NDVI. Photogramm Eng Remote Sens 68:623–629Google Scholar
  45. Oindo BO, Skidmore AK (2002) Interannual variability of NDVI and species richness in Kenya. Int J Remote Sens 23:285–298. doi: 10.1080/01431160010014819 CrossRefGoogle Scholar
  46. ORNL DAAC (2008) MODIS Collection 5 Land Products Global Subsetting and Visualization Tool. ORNL DAAC, Oak Ridge, Tennessee, USA. Accessed November 30, 2015. Subset obtained for MOD13Q1 product at 18.86N, 100.42W, time period: 2004–01-01 to 2009–12-19, and subset size: 20.25 x 20.25 km. doi: 10.3334/ORNLDAAC/1241
  47. Peterson RO (1999) Wolf-moose interaction on Isle Royale: the end of natural regulation? Ecol Appl 9:10–16Google Scholar
  48. Pierce BM, Bleich VC, Monteith KL, Bowyer RT (2012) Top-down versus bottom-up forcing: evidence from mountain lions and mule deer. J Mammal 93:977–988CrossRefGoogle Scholar
  49. Power ME (1992) Top-down and bottom-up forces in food webs: do plants have primacy. Ecology 73:733–746CrossRefGoogle Scholar
  50. Ripple WJ, Beschta RL (2008) Trophic cascades involving cougar, mule deer, and black oaks in Yosemite National Park. Biol Conserv 141:1249–1256. doi: 10.1016/j.biocon.2008.02.028 CrossRefGoogle Scholar
  51. Ripple WJ et al (2014) Status and ecological effects of the world’s largest carnivores. Science 343:1241484CrossRefPubMedGoogle Scholar
  52. Sæther B-E (1997) Environmental stochasticity and population dynamics of large herbivores: a search for mechanisms. Trends Ecol Evol 12:143–149CrossRefPubMedGoogle Scholar
  53. Scherber C et al (2010) Bottom-up effects of plant diversity on multitrophic interactions in a biodiversity experiment. Nature 468:553–556CrossRefPubMedGoogle Scholar
  54. Silveira L, Jácomo ATA, Diniz-Filho JAF (2003) Camera trap, line transect census and track surveys: a comparative evaluation. Biol Conserv 114:351–355. doi: 10.1016/S0006- CrossRefGoogle Scholar
  55. Sinclair ARE, Krebs CJ (2002) Complex numerical responses to top-down and bottom-up processes in vertebrate populations. Philos Trans R Soc Lond B, Biol Sci 357:1221-12313207(03)00063-6Google Scholar
  56. Sinclair ARE, Mduma S, Brashares JS (2003) Patterns of predation in a diverse predator–prey system. Nature 425:288–290CrossRefPubMedGoogle Scholar
  57. Sinclair ARE, Pech RP, Dickman CR, Hik D, Mahon P, Newsome AE (1998) Predicting effects of predation on conservation of endangered prey. Conserv Biol 12:564–575CrossRefGoogle Scholar
  58. Soria-Díaz L, Fowler MS, Monroy-Vilchis O, Oro D (in press) Functional responses of cougars (Puma concolor) in a multiple prey-species system. Integr Zool doi. doi: 10.1111/1749-4877.12262
  59. Soria-Díaz L, Monroy-Vilchis O, Rodríguez-Soto C, Zarco-González M, Urios V (2010) Variation of abundance and density of Puma concolor in zones of high and low concentration of camera traps in Central Mexico. Anim Biol 60:361–371. doi: 10.1163/157075610X523251 CrossRefGoogle Scholar
  60. Stenseth NC et al (2015) Testing for effects of climate change on competitive relationships and coexistence between two bird species. Proc R Soc Lond B Biol Sci 282Google Scholar
  61. Sunquist M, Sunquist F (2002) Wild cats of the world. University of Chicago Press, ChicagoGoogle Scholar
  62. Sweet SK, Asmus A, Rich ME, Wingfield J, Gough L, Boelman NT (2015) NDVI as a predictor of canopy arthropod biomass in the Alaskan arctic tundra Ecological Applications 25:779–790 doi: 10.1890/14-0632.1
  63. Valenzuela D (1998) Natural history of the white-nosed coati, Nasua narica, in a tropical dry forest of western Mexico. Rev Mex Mastoz (Nueva Epoca) 3:26–44Google Scholar
  64. Valenzuela D, Ceballos G (2000) Habitat selection, home range, and activity of the white-nosed coati (Nasua narica) in a Mexican tropical dry forest. J Mammal 81:810–819CrossRefGoogle Scholar
  65. Vucetich JA, Peterson RO (2004) The influence of top-down, bottom-up and abiotic factors on the moose (Alces alces) population of Isle Royale. Proc R Soc Lond B Biol Sci 271:183–189CrossRefGoogle Scholar
  66. Walker M, Jones TH (2001) Relative roles of top-down and bottom-up forces in terrestrial tritrophic plant–insect herbivore–natural enemy systems. Oikos 93:177–187. doi: 10.1034/j.1600-0706.2001.930201.x CrossRefGoogle Scholar
  67. Willems EP, Barton RA, Hill RA (2009) Remotely sensed productivity, regional home range selection, and local range use by an omnivorous primate. Behav Ecol 20:985–992. doi: 10.1093/beheco/arp087 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Leroy Soria-Díaz
    • 1
  • Mike S. Fowler
    • 2
    • 3
  • Octavio Monroy-Vilchis
    • 4
  1. 1.Instituto de Ecología AplicadaUniversidad Autónoma de TamaulipasCiudad VictoriaMexico
  2. 2.Department of BiosciencesSwansea UniversitySwanseaUK
  3. 3.Population Ecology Group, IMEDEA (CSIC-UIB)Institut Mediterrani d’Estudis Avançats C/Miquel MarquèsMallorcaSpain
  4. 4.Centro de Investigación en Ciencias Biológicas AplicadasUniversidad Autónoma del Estado de MéxicoTolucaMexico

Personalised recommendations