Evaluating the predictive power of field variables for species and individual molecular identification on wolf noninvasive samples

  • Mónia Nakamura
  • Raquel Godinho
  • H. Rio-Maior
  • S. Roque
  • A. Kaliontzopoulou
  • J. Bernardo
  • D. Castro
  • S. Lopes
  • F. Petrucci-Fonseca
  • F. Álvares
Original Article

Abstract

Live-trapping elusive animals is often challenging, hampering the achievement of reasonable sample sizes for molecular studies. In such cases, the use of noninvasive samples (NIS) is critical in many research fields, mostly related to ecology, management and conservation of wild species. We analysed the influence of several variables potentially associated with the quality of wolf NIS—season, weather conditions, and in situ collected site and sample characteristics—on the success rates of species and individual identification performed using mtDNA and 13 microsatellites, respectively. NIS included scats, urine and saliva collected from two areas in Portugal. Scat samples exhibited the highest success rate for both species (81%) and individual identification (59%), compared with urine (63 and 30%, respectively) or saliva samples (48 and 36%, respectively). The success rate of species identification of scats was better explained by season of collection, the presence of mucous, moisture and odour. For samples with successful species identification analysis, individual identification success was best predicted by the presence of odour. Performing a preliminary selection of scat samples with the best characteristics can increase up to 13% the success rates of molecular analysis. Urine collected on snow had a higher success rate of species identification than that collected on vegetation. To our knowledge, this was the first time that wolf urine on vegetation near ground-scratching marks is used as DNA source. Saliva samples collected with different substrate types can also be used for species identification. These results contribute to optimising noninvasive sampling procedures, maximising the success of molecular ecology studies, and ultimately minimising sampling efforts and costs.

Keywords

Sample variable Noninvasive genetic sampling Saliva Faeces Urine Canis lupus 

Supplementary material

10344_2017_1112_MOESM1_ESM.pdf (139 kb)
Online Resource 1(PDF 138 kb)
10344_2017_1112_MOESM2_ESM.pdf (249 kb)
Online Resource 2(PDF 248 kb)
10344_2017_1112_MOESM3_ESM.pdf (141 kb)
Online Resource 3(PDF 141 kb)

References

  1. Abraham JE, Maranian MJ, Spiteri I et al (2012) Saliva samples are a viable alternative to blood samples as a source of DNA for high throughput genotyping. BMC Med Genet. doi:10.1186/1755-8794-5-19 Google Scholar
  2. APA-Agência Portuguesa do Ambiente (2015) Sistema Nacional de Informação de Recursos HídricosGoogle Scholar
  3. Asa CS, Mech LD, Seal US (1985) The use of urine, faeces, and anal-gland secretions in scent-marking by a captive wolf (Canis lupus) pack. Anim Behav 33:1034–1036CrossRefGoogle Scholar
  4. Asa CS, Mech LD, Seal US, Plotka ED (1990) The influence of social and endocrine factors on urine-marking by captive wolves (Canis lupus). Horm Behav 24:497–509CrossRefPubMedGoogle Scholar
  5. Barja I, DE Miguel FJ, Barcena F et al (2005) Faecal marking behaviour of Iberian wolf in different zones of their territory. Folia Zool 54:21–29Google Scholar
  6. Barja I, Silván G, Illera JC (2008) Relationships between sex and stress hormone levels in feces and marking behavior in a wild population of Iberian wolves (Canis lupus signatus). J Chem Ecol 34:697–701CrossRefPubMedGoogle Scholar
  7. Bartoń K (2009) MuMIn: multi-model inference; R package version 0.12.2/r18Google Scholar
  8. Beja-Pereira A, Oliveira R, Alves PC et al (2009) Advancing ecological understandings through technological transformations in noninvasive genetics. Mol Ecol Resour 9:1279–1301. doi:10.1111/j.1755-0998.2009.02699.x CrossRefPubMedGoogle Scholar
  9. Blacket MJ, Robin C, Good RT et al (2012) Universal primers for fluorescent labelling of PCR fragments—an efficient and cost-effective approach to genotyping by fluorescence. Mol Ecol Resour 12:456–463. doi:10.1111/j.1755-0998.2011.03104.x CrossRefPubMedGoogle Scholar
  10. Blanco JC, Cortés Y (2012) Surveying wolves without snow: a critical review of the methods used in Spain. Hystrix 23:35–48. doi:10.4404/hystrix-23.1-4670 Google Scholar
  11. Blejwas K, Williams KJ, Shin GT et al (2006) Salivary DNA evidence convicts breeding male coyotes of killing sheep. J Wildl Manag 70:1087–1093CrossRefGoogle Scholar
  12. Bohling JH, Waits LP (2011) Assessing the prevalence of hybridization between sympatric Canis species surrounding the red wolf (Canis rufus) recovery area in North Carolina. Mol Ecol 20:2142–2156. doi:10.1111/j.1365-294X.2011.05084.x CrossRefPubMedGoogle Scholar
  13. Boom R, Sol CJ, Salimans MM et al (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503PubMedPubMedCentralGoogle Scholar
  14. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach, 2nd edn. Springer, USAGoogle Scholar
  15. Caniglia R, Fabbri E, Cubaynes S et al (2012) An improved procedure to estimate wolf abundance using non-invasive genetic sampling and capture–recapture mixture models. Conserv Genet 13:53–64. doi:10.1007/s10592-011-0266-1 CrossRefGoogle Scholar
  16. Caniglia R, Fabbri E, Mastrogiuseppe L, Randi E (2013) Who is who? Identification of livestock predators using forensic genetic approaches. Forensic Sci Int Genet 7:397–404. doi:10.1016/j.fsigen.2012.11.001 CrossRefPubMedGoogle Scholar
  17. Cramer H (1946) Mathematical methods of statistics. Princeton University Press, USAGoogle Scholar
  18. Crawley MJ (2002) Statistical computing—an introduction to data analysis using S-plus. Wiley, New YorkGoogle Scholar
  19. Creel S, Fox JE, Hardy A et al (2002) Snowmobile activity and glucocorticoid stress responses in wolves and elk. Conserv Biol 16:809–814. doi:10.1046/j.1523-1739.2002.00554.x CrossRefGoogle Scholar
  20. Czarnomska SD, Jędrzejewska B, Borowik T et al (2013) Concordant mitochondrial and microsatellite DNA structuring between polish lowland and Carpathian Mountain wolves. Conserv Genet. doi:10.1007/s10592-013-0446-2 Google Scholar
  21. Darimont CT, Reimchen TE, Bryan HM, Paquet PC (2008) Faecal-centric approaches to wildlife ecology and conservation; methods, data and ethics. Wildl Biol Pract 4:73–87. doi:10.2461/wbp.2008.4.7 CrossRefGoogle Scholar
  22. Davison A, Birks JDS, Brookes RC et al (2002) On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. J Zool 257:141–143. doi:10.1017/S0952836902000730 CrossRefGoogle Scholar
  23. De Barba M, Waits LP, Garton EO et al (2010) The power of genetic monitoring for studying demography, ecology and genetics of a reintroduced brown bear population. Mol Ecol 19:3938–3951. doi:10.1111/j.1365-294X.2010.04791.x CrossRefPubMedGoogle Scholar
  24. Dormann CF, Elith J, Bacher S et al (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography (Cop) 36:27–46. doi:10.1111/j.1600-0587.2012.07348.x CrossRefGoogle Scholar
  25. EEA (2008) Impacts of Europe’s changing Climate—2008 indicator-based assessment Report No 4/2008. Copenhagen, DenmarkGoogle Scholar
  26. Fisher RA (1954) Statistical methods for research workers. Oliver and Boyd, EdinburghGoogle Scholar
  27. Frantz AC, Pope LC, Carpenter PJ et al (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) using faecal DNA. Mol Ecol 12:1649–1661. doi:10.1046/j.1365-294X.2003.01848.x CrossRefPubMedGoogle Scholar
  28. Frosch C, Dutsov A, Georgiev G, Nowak C (2011) Case report of a fatal bear attack documented by forensic wildlife genetics. Forensic Sci Int Genet 5:342–344. doi:10.1016/j.fsigen.2011.01.009 CrossRefPubMedGoogle Scholar
  29. Godinho R, Llaneza L, Blanco JC et al (2011) Genetic evidence for multiple events of hybridization between wolves and domestic dogs in the Iberian peninsula. Mol Ecol 20:5154–5166. doi:10.1111/j.1365-294X.2011.05345.x CrossRefPubMedGoogle Scholar
  30. Godinho R, Abáigar T, Lopes S et al (2012) Conservation genetics of the endangered Dorcas gazelle (Gazella dorcas spp.) in northwestern Africa. Conserv Genet 13:1003–1015. doi:10.1007/s10592-012-0348-8 CrossRefGoogle Scholar
  31. Godinho R, López-Bao JV, Castro D et al (2015) Real-time assessment of hybridization between wolves and dogs: combining noninvasive samples with ancestry informative markers. Mol Ecol Resour 15:317–328. doi:10.1111/1755-0998.12313 CrossRefPubMedGoogle Scholar
  32. Harms V, Nowak C, Carl S et al (2015) Experimental evaluation of genetic predator identification from saliva traces on wildlife kills. J Mammal 96:138–143. doi:10.1093/jmammal/gyu014 CrossRefGoogle Scholar
  33. Harris RB, Winnie J, Amish SJ et al (2010) Argali abundance in the Afghan Pamir using capture–recapture modeling from fecal DNA. J Wildl Manag 74:668–677. doi:10.2193/2009-292 CrossRefGoogle Scholar
  34. Hausknecht R, Gula R, Pirga B, Kuehn R (2006) Urine—a source for noninvasive genetic monitoring in wildlife. Mol Ecol Notes 7:208–212. doi:10.1111/j.1471-8286.2006.01622.x CrossRefGoogle Scholar
  35. Hedmark E, Flagstad Ø, Segerstro P et al (2004) DNA-based individual and sex identification from wolverine (Gulo gulo) faeces and urine. Conserv Genet 5:405–410CrossRefGoogle Scholar
  36. INE (2013) Instituto Nacional de Estatística-Statistics Portugal—http://www.ine.pt
  37. INE (2011) Instituto Nacional de Estatística-Statistics Portugal—http://www.ine.pt
  38. IPCC (2007) Climate change 2007: the physical science basis. Contribution of Working Group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. Cambridge University Press, CambridgeGoogle Scholar
  39. IPMA (2012) Normais climatológicas 1981–2010. Instituto Português do Mar e da Atmosfera http://www.ipma.pt/pt/oclima/normais.clima/
  40. Johnson PCD, Haydon DT (2007) Maximum-likelihood estimation of allelic dropout and false allele error rates from microsatellite genotypes in the absence of reference data. Genetics 175:827–842. doi:10.1534/genetics.106.064618 CrossRefPubMedPubMedCentralGoogle Scholar
  41. Kelly MJ, Betsch J, Wultsch C et al (2012) Noninvasive sampling for carnivores. In: Boitani L, Powell RA (eds) Carniv. Ecol. Conserv. A Handb. Tech. Oxford University Press, London, pp 47–69CrossRefGoogle Scholar
  42. Llaneza L, García EJ, López-Bao JV (2014) Intensity of territorial marking predicts wolf reproduction: implications for wolf monitoring. PLoS One 9:e93015. doi:10.1371/journal.pone.0093015 CrossRefPubMedPubMedCentralGoogle Scholar
  43. Lobo D, Godinho R, Álvares F et al (2015) A new method for noninvasive genetic sampling of saliva in ecological research. PLoS One 10:e0139765. doi:10.1371/journal.pone.0139765 CrossRefPubMedPubMedCentralGoogle Scholar
  44. Lonsinger RC, Gese EM, Dempsey SJ et al (2014) Balancing sample accumulation and DNA degradation rates to optimize noninvasive genetic sampling of sympatric carnivores. Mol Ecol Resour 15:831–842. doi:10.1111/1755-0998.12356 CrossRefPubMedGoogle Scholar
  45. Lucchini V, Fabbri E, Marucco F et al (2002) Noninvasive molecular tracking of colonizing wolf (Canis lupus) packs in the western Italian alps. Mol Ecol 11:857–868CrossRefPubMedGoogle Scholar
  46. Marucco F, Pletscher DH, Boitani L et al (2009) Wolf survival and population trend using non-invasive capture-recapture techniques in the western alps. J Appl Ecol 46:1003–1010. doi:10.1111/j.1365-2664.2009.01696.x CrossRefGoogle Scholar
  47. Mech LD, Almberg ES, Smith D et al (2012) Use of real-time PCR to detect canine parvovirus in feces of free-ranging wolves. J Wildl Dis 48:473–476. doi:10.7589/0090-3558-48.2.473 CrossRefPubMedGoogle Scholar
  48. Monterroso P, Castro D, Silva TL et al (2012) Factors affecting the (in)accuracy of mammalian mesocarnivore scat identification in South-western Europe. J Zool 289:243–250. doi:10.1111/jzo.12000 CrossRefGoogle Scholar
  49. Mumma MA, Soulliere CE, Mahoney SP, Waits LP (2014) Enhanced understanding of predator-prey relationships using molecular methods to identify predator species, individual and sex. Mol Ecol Resour 14:100–108. doi:10.1111/1755-0998.12153 CrossRefPubMedGoogle Scholar
  50. Murphy MA, Kendall KC, Robinson A, Waits LP (2007) The impact of time and field conditions on brown bear (Ursus arctos) faecal DNA amplification. Conserv Genet 8:1219–1224. doi:10.1007/s10592-006-9264-0 CrossRefGoogle Scholar
  51. O’Reilly C, Statham M, Mullins J et al (2008) Efficient species identification of pine marten (Martes martes) and red fox (Vulpes vulpes) scats using a 5′ nuclease real-time PCR assay. Conserv Genet 9:735–738CrossRefGoogle Scholar
  52. Onorato D, White C, Zager P, Waits LP (2004) Detection of predator presence at elk mortality sites using mtDNA analysis of hair and scat samples. Wildl Soc Bull 34:815–820CrossRefGoogle Scholar
  53. Palomares F, Godoy JA, Piriz A, O’Brien SJ (2002) Faecal genetic analysis to determine the presence and distribution of elusive carnivores: design and feasibility for the Iberian lynx. Mol Ecol 11:2171–2182CrossRefPubMedGoogle Scholar
  54. Panasci M, Ballard WB, Breck S et al (2011) Evaluation of fecal DNA preservation techniques and effects of sample age and diet on genotyping success. J Wildl Manag 75:1616–1624. doi:10.1002/jwmg.221 CrossRefGoogle Scholar
  55. Peters RP, Mech LD (1975) Scent-marking in wolves. Am Sci 63:628–637PubMedGoogle Scholar
  56. Piggott MP (2004) Effect of sample age and season of collection on the reliability of microsatellite genotyping of faecal DNA. Wildl Res 31:485–493. doi:10.1071/WR03096 CrossRefGoogle Scholar
  57. Pimenta V, Barroso I, Álvares F, et al (2005) Situação do lobo em Portugal: resultados do censo nacional 2002/2003. Relatório Técnico. Instituto da Conservação da Natureza/Grupo Lobo, LisboaGoogle Scholar
  58. R Core Team (2014) R: A language and environment for statistical computing. 2:1–3479Google Scholar
  59. RStudio Team (2015) RStudio: integrated development for RGoogle Scholar
  60. Santini A, Lucchini V, Fabbri E, Randi E (2007) Ageing and environmental factors affect PCR success in wolf (Canis lupus) excremental DNA samples. Mol Ecol Notes 7:955–961. doi:10.1111/j.1471-8286.2007.01829.x CrossRefGoogle Scholar
  61. Scandura M, Capitani C, Iacolina L, Marco A (2006) An empirical approach for reliable microsatellite genotyping of wolf DNA from multiple noninvasive sources. Conserv Genet 7:813–823. doi:10.1007/s10592-005-9106-5 CrossRefGoogle Scholar
  62. Schrader C, Schielke A, Ellerbroek L, Johne R (2012) PCR inhibitors—occurrence, properties and removal. J Appl Microbiol 113:1014–1026. doi:10.1111/j.1365-2672.2012.05384.x CrossRefPubMedGoogle Scholar
  63. Schwartz MK, Cushman SA, Mckelvey KS et al (2006) Detecting genotyping errors and describing American black bear movement in northern Idaho. Ursus 17:138–148CrossRefGoogle Scholar
  64. Sidorovich VE, Tikhomirova LL, Jędrzejewska B (2003) Wolf Canis lupus numbers, diet and damage to livestock in relation to hunting and ungulate abundance in northeastern Belarus during 1990–2000. Wildlife Biol 9:103–111Google Scholar
  65. Stenglein JL, Waits LP, Ausband DE et al (2011) Estimating gray wolf pack size and family relationships using noninvasive genetic sampling at rendezvous sites. J Mammal 92:784–795. doi:10.1644/10-MAMM-A-200.1 CrossRefGoogle Scholar
  66. Stephenson N, Clifford D, Worth SJ et al (2013) Development and validation of a fecal PCR assay for Notoedres cati and application to notoedric mange cases in bobcats (Lynx rufus) in northern California, USA. J Wildl Dis 49:303–311. doi:10.7589/2012-05-136 CrossRefPubMedGoogle Scholar
  67. Sundqvist A-K, Ellegren H, Vilà C (2008) Wolf or dog? Genetic identification of predators from saliva collected around bite wounds on prey. Conserv Genet 9:1275–1279. doi:10.1007/s10592-007-9454-4 CrossRefGoogle Scholar
  68. Taberlet P, Waits LP, Luikart G (1999) Nonnvasive genetic sampling look before you leap. Trends Ecol Evol 14:323–327CrossRefPubMedGoogle Scholar
  69. Templ M, Alfons A, Kowarik A, Prantner B (2011) VIM: visualization and imputation of missing values; R package version 2.3Google Scholar
  70. Troyanskaya O, Cantor M, Sherlock G et al (2001) Missing value estimation methods for DNA microarrays. Bioinformatics 17:520–525. doi:10.1093/bioinformatics/17.6.520 CrossRefPubMedGoogle Scholar
  71. Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379. doi:10.1046/j.1471-8278 Google Scholar
  72. Valière N, Taberlet P (2000) Urine collected in the field as a source of DNA for species and individual identification. Mol Ecol 9:2149–2154CrossRefGoogle Scholar
  73. Valière N, Berthier P, Mouchiroud D, Pontier D (2002) GEMINI: software for testing the effects of genotyping errors and multitubes approach for individual identification. Mol Ecol Notes 2:83–86CrossRefGoogle Scholar
  74. Valière N, Fumagalli L, Gielly L et al (2003) Long-distance wolf recolonization of France and Switzerland inferred from non-invasive genetic sampling over a period of 10 years. Anim Conserv 6:83–92. doi:10.1017/S1367943003003111 CrossRefGoogle Scholar
  75. Vilà C, Urios V, Castroviejo J (1994) Use of faeces for scent marking in Iberian wolves (Canis lupus). Can J Zool 72:374–377CrossRefGoogle Scholar
  76. Vilà C, Amorim I, Leonard J et al (1999) Mitochondrial DNA phylogeography and population history of the grey wolf Canis lupus. Mol Ecol 8:2089–2103CrossRefPubMedGoogle Scholar
  77. Vynne C, Baker MR, Breuer ZK, Wasser SK (2012) Factors influencing degradation of DNA and hormones in maned wolf scat. Anim Conserv 15:184–194. doi:10.1111/j.1469-1795.2011.00503.x CrossRefGoogle Scholar
  78. Waits LP, Paetkau D (2005) Noninvasive genetic sampling tools for wildlife biologists: a review of application and recommendations for accurate data collection. J Wildl Manag 69:1419–1433. doi:10.2193/0022-541X(2005)69 CrossRefGoogle Scholar
  79. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256CrossRefPubMedGoogle Scholar
  80. Wasser SK, Davenport B, Ramage ER et al (2004) Scat detection dogs in wildlife research and management: application to grizzly and black bears in the Yellowhead ecosystem, Alberta, Canada. Can J Zool 82:475–492. doi:10.1139/Z04-020 CrossRefGoogle Scholar
  81. Wengert GM, Gabriel MW, Foley JE et al (2013) Molecular techniques for identifying intraguild predators of fishers and other North American small carnivores. Wildl Soc Bull 37:659–663. doi:10.1002/wsb.287 Google Scholar
  82. Wengert GM, Gabriel MW, Matthews SM et al (2014) Using DNA to describe and quantify interspecific killing of fishers in California. J Wildl Manag 78:603–611. doi:10.1002/jwmg.698 CrossRefGoogle Scholar
  83. Williams CL, Blejwas K, Johnston JJ, Jaeger MM (2003) A coyote in sheep’s clothing: predator identification from saliva. Carniv Res Manag 31:926–932Google Scholar
  84. Wilson E (1927) Probable inference, the law of succession, and statistical inference. J Am Stat Assoc 22:209–212. doi:10.2307/2276774 CrossRefGoogle Scholar
  85. Zub K, Theuerkauf J, Jędrzejewski W et al (2003) Wolf pack territory marking in the Bialowieza primeval Forest (Poland). Behaviour 140:635–648CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.CIBIO/InBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, Universidade do PortoVairãoPortugal
  2. 2.Departamento de Biologia, Faculdade de CiênciasUniversidade do PortoPortoPortugal
  3. 3.Grupo Lobo, Faculdade de Ciências da Universidade de LisboaLisbonPortugal
  4. 4.CE3C, Centre for Ecology, Evolution and Environmental ChangeFaculdade de Ciências da Universidade de LisboaLisbonPortugal

Personalised recommendations