Conservation in the southern edge of Tetrao urogallus distribution: Gene flow despite fragmentation in the stronghold of the Cantabrian capercaillie

  • Alberto Fameli
  • María Morán-Luis
  • Rolando Rodríguez-Muñoz
  • María José Bañuelos
  • Mario Quevedo
  • Patricia Mirol
Original Article

Abstract

The Cantabrian capercaillie (Tetrao urogallus cantabricus) is an endangered subspecies of the Western capercaillie, endemic of northern Spain, inhabiting the south-western limit of the species range. Assessing genetic variability and the factors that determine it is crucial in order to develop an effective conservation strategy. In this work, non-invasive samples were collected in some of the best preserved areas inhabited by Cantabrian capercaillie. Nine microsatellite loci and a sex-specific marker were analysed. We included five zones, separated by valleys with different levels of habitat modifications. No evidence of genetic clustering was found which suggests that fragmentation and development in the area do not act as barriers to gene flow. Nonetheless, significant differences among sampling zones were encountered in terms of their allelic frequencies (global FST = 0.035, p = 0.001). Pairwise FST comparisons showed differences between all sampling zones included, except between the two ones located in the South (Degaña and Alto Sil). These findings, along with the results of individual based genetic differences, indicate that gene flow among sampling zones might be at least slightly compromised, except between the two zones located in the South. Despite this, the sampling zones seem to exchange migrants at a rate that prevents genetic differentiation to the point of creating clusters. Our results show that the capercaillies in the study area constitute a single interbreeding group, which is an important piece of information that provides support to better understand the dynamics of this endangered subspecies.

Keywords

Microsatellites Habitat fragmentation Gene flow Genetic structure 

Supplementary material

10344_2017_1110_MOESM1_ESM.docx (14 kb)
ESM 1(DOCX 14 kb)
10344_2017_1110_MOESM2_ESM.docx (398 kb)
Fig. S1Study area showing forest areas (green), mineral extraction sites (red). The symbols represent only those leks where at least one individual was detected. The five different sampling zones are: Muniellos (○), Hermo (★), Leitariegos (△), Degaña (▲) and Alto Sil (●). Lighter grey represents higher altitude. Highly fragmented forest areas can be seen between Hermo and Degaña, while there is a continuum of forest cover between Degaña and Alto Sil (the only two sampling zones that did not show differences on their allelic frequencies). (DOCX 398 kb)
10344_2017_1110_MOESM3_ESM.docx (53 kb)
Fig. S2Detectability based on the number of times each individual’s presence was recorded. (DOCX 53 kb)
10344_2017_1110_MOESM4_ESM.docx (531 kb)
Fig. S3Barplots obtained with STRUCTURE for K = 1–15, averaging the results from ten different runs for each K value with the program CLUMPAK. Settings are a) inferring alpha and using a lambda value of 1 (default setting); and b) inferring both alpha and lambda. In both cases, all runs for the same K converged to the barplots shown. Each barplot is divided into six portions based on the individuals’ geographic membership, corresponding to (from left to right): 1) Muniellos; 2) Hermo; 3) bird that was detected in Hermo during 2009 and in Degaña during 2010; 4) Degaña; 5) Leitariegos; 6) Alto Sil. (DOCX 530 kb)

References

  1. Alda F, Sastre P, De La Cruz-Cardiel PJ, Doadrio I (2011) Population genetics of the endangered Cantabrian capercaillie in northern Spain. Anim Conserv 14:249–260CrossRefGoogle Scholar
  2. Anderson JM (1991) The effects of climate change on decomposition processes in grassland and coniferous forests. Ecol Appl 1:326–347CrossRefPubMedGoogle Scholar
  3. Bajc M, Čas M, Ballian D et al (2011) Genetic differentiation of the Western Capercaillie highlights the importance of South-Eastern Europe for understanding the species phylogeography. PLoS One 6:e23602CrossRefPubMedPubMedCentralGoogle Scholar
  4. Bañuelos MJ, Quevedo M (2008) Update of the situation of the Cantabrian capercaillie Tetrao urogallus cantabricus: an ongoing decline. Grouse News 25:5–7Google Scholar
  5. Bellemain E, Nawaz MA, Valentini A, Swenson JE, Taberlet P (2007) Genetic tracking of the brown bear in northern Pakistan and implications for conservation. Biol Conserv 134:537–547CrossRefGoogle Scholar
  6. Bijlsma R, Loeschcke V (2011) Genetic erosion impedes adaptive responses to stressful environments. Evol App 5:117–129CrossRefGoogle Scholar
  7. Borchtchevski V, Moss R (2014) Age structure of Capercaillie males (Tetrao urogallus) in NW Russia may reflect two-way movements—a hypothesis. Ornis Fennica 91:14–28Google Scholar
  8. Caizergues A, Dubois S, Loiseau A, Mondor G, Rasplus JY (2001) Isolation and characterization of microsatellite loci in black grouse (Tetrao tetrix). Mol Ecol Notes 1:36–38CrossRefGoogle Scholar
  9. Castroviejo J (1967) Eine neue Auerhuhnrasse von der Iberischen Halbinsel. J Ornithol 108:220–221Google Scholar
  10. Castroviejo J (1975) El urogallo en España. Dissertation. Consejo Superior de Investigaciones Científicas, MadridGoogle Scholar
  11. Chen C, Durand E, Forbes F, François O (2007) Bayesian clustering algorithms ascertaining spatial population structure: a new computer program and a comparison study. Mol Ecol Notes 7:747–756CrossRefGoogle Scholar
  12. Del Hoyo J, Elliot A, Sargatall J (1994) Handbook of the birds of the world. New vultures to guinea fowl. Lynx, BarcelonaGoogle Scholar
  13. Durand E, Jay F, Gaggiotti OE, François O (2009) Spatial inference of admixture proportions and secondary contact zones. Mol Biol Evol 26:1963–1973CrossRefPubMedGoogle Scholar
  14. Duriez O, Sachet JM, Ménoni E, Pidancier N, Miquel C, Taberlet P (2007) Phylogeography of the capercaillie in Eurasia: what is the conservation status in the Pyrenees and Cantabrian Mounts? Conserv Genet 8:513–526CrossRefGoogle Scholar
  15. Earl DA, vonHoldt BM (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361CrossRefGoogle Scholar
  16. Eckert CG, Samis KE, Lougheed SC (2008) Genetic variation across species’ geographical ranges: the central-marginal hypothesis and beyond. Mol Ecol 17:1170–1188CrossRefPubMedGoogle Scholar
  17. Ehrlich PR (1988) The loss of diversity: causes and consequences. In: Wilson EO (ed) Biodiversity. National Academy Press, Washington DC, pp 21–27Google Scholar
  18. Evett IW, Weir BS (1998) Interpreting DNA evidence: statistical genetics for forensic scientists. Sinauer, SunderlandGoogle Scholar
  19. Excoffier L, Laval G, Schneider S (2005) ARLEQUIN ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50Google Scholar
  20. Fedy BC, Martin K, Ritland C, Young J (2008) Genetic and ecological data provide incongruent interpretations of population structure and dispersal in naturally subdivided populations of white-tailed ptarmigan (Labapus leucura). Mol Ecol 17:1905–1917CrossRefPubMedGoogle Scholar
  21. Florin AB, Höglund J (2007) Absence of population structure of turbot (Psetta maxima) in the Baltic Sea. Mol Ecol 16:115–126CrossRefPubMedGoogle Scholar
  22. Frankham R, Ralls K (1998) Conservation biology: inbreeding leads to extinction. Nature 392:441–442CrossRefGoogle Scholar
  23. Frantz AC, Pope LC, Burke TA, Wilson GJ, Delahay RJ, Roper TJ (2003) Reliable microsatellite genotyping of the Eurasian badger (Meles meles) from faecal DNA. Mol Ecol 12:1649–1661CrossRefPubMedGoogle Scholar
  24. Fraser DF (2000) Species at the edge: the case for listing of “peripheral” species. In: Darling L (ed) At Risk: Proceedings of a Conference on the Biology and Management of Species and Habitats at Risk. British Columbia Ministry of Environment, Lands and Parks, Victoria, pp 49–53.Google Scholar
  25. García D, Quevedo M, Obeso J, Abajo A (2005) Fragmentation patterns and protection of montane forest in the Cantabrian range (NW Spain). Forest Ecol Manag 208:29–43CrossRefGoogle Scholar
  26. González MA, Olea PP, Robles L, Ena V (2010) The Mediterranean Quercus pyrenaica oak forest: a new habitat for the Capercaillie? J Ornithol 151:901–906CrossRefGoogle Scholar
  27. Hampe A, Petit RJ (2005) Conserving biodiversity under climate change: the rear edge matters. Ecol Lett 8:461–467CrossRefPubMedGoogle Scholar
  28. Hedrick PW (2004) Recent developments in conservation genetics. Forest Ecol Manag 197:3–19CrossRefGoogle Scholar
  29. Hedrick PW, Miller PS (1992) Conservation genetics: techniques and fundamentals. Ecol Appl 2:30–46CrossRefPubMedGoogle Scholar
  30. Höglund J, Larsson JK, Jansman HA, Segelbacher G (2007) Genetic variability in European black grouse (Tetrao tetrix). Conserv Genet 8:239–243CrossRefGoogle Scholar
  31. Kalinowski ST (2005) HP-Rare: a computer program for performing rarefaction on measures of allelic diversity. Mol Ecol Notes 5:187–189CrossRefGoogle Scholar
  32. Klinga P, Mikoláš M, Zhelev P, Höglund J, Paule L (2015) Genetic differentiation of western capercaillie in the Carpathian Mountains: the importance of post glacial expansions and habitat connectivity. Biol J Linn Soc 116:873–889CrossRefGoogle Scholar
  33. Kopelman NM, Mayzel J, Jakobsson M, Rosenberg NA, Mayrose I (2015) Clumpak: a program for identifying clustering modes and packaging population structure inferences across K. Mol Ecol Resour 15:1179–1191CrossRefPubMedPubMedCentralGoogle Scholar
  34. Lande R (1988) Genetics and demography in biological conservation. Science 241:1455–1460CrossRefPubMedGoogle Scholar
  35. Lawton JH (1993) Range, population abundance and conservation. Trends Ecol Evol 8:409–413CrossRefPubMedGoogle Scholar
  36. Lesica P, Allendorf FW (1995) When are peripheral populations valuable for conservation? Conserv Biol 9:753–760CrossRefGoogle Scholar
  37. Miller MP (2005) Alleles in space: computer software for the joint analysis of interindividual spatial and genetic information. J Hered 96:722–724CrossRefPubMedGoogle Scholar
  38. Miquel C, Bellemain E, Poillot C, Bessiere J, Durand A, Taberlet P (2006) Quality indexes to assess the reliability of genotypes in studies using noninvasive sampling and multiple-tube approach. Mol Ecol Notes 6:985–988CrossRefGoogle Scholar
  39. Morán-Luis M, Fameli A, Blanco Fontao B et al (2014) Demographic status and genetic tagging of endangered capercaillie in NW Spain. PLoS One 9:e99799CrossRefPubMedPubMedCentralGoogle Scholar
  40. Paetkau D, Calvert W, Stirling I, Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347–354CrossRefPubMedGoogle Scholar
  41. Park SJ (2001) The excel microsatellite toolkit. University of Dublin, DublinGoogle Scholar
  42. Peakall R, Smouse PE (2006) GENALEX 6: genetic analysis in excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295CrossRefGoogle Scholar
  43. Pérez T, Vázquez JF, Quirós F, Domínguez A (2011) Improving non-invasive genotyping in capercaillie (Tetrao urogallus): redesigning sexing and microsatellite primers to increase efficiency on faeces samples. Conserv Genet Resour 3:483–487CrossRefGoogle Scholar
  44. Piertney SB, Höglund J (2001) Polymorphic microsatellite DNA markers in black grouse (Tetrao tetrix). Mol Ecol Notes 1:303–304CrossRefGoogle Scholar
  45. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959PubMedPubMedCentralGoogle Scholar
  46. Quevedo M, Bañuelos MJ, Obeso JR (2006) The decline of Cantabrian capercaillie: how much does habitat configuration matter? Biol Conserv 127:190–200CrossRefGoogle Scholar
  47. Ralls K, Ballou JD, Templeton A (1988) Estimates of lethal equivalents and the costs of inbreeding in mammals. Conserv Biol 2:185–193CrossRefGoogle Scholar
  48. Reed D, Frankham R (2003) Correlation between fitness and genetic diversity. Conserv Biol 17:230–237CrossRefGoogle Scholar
  49. Rodríguez-Muñoz R, Mirol P, Segelbacher G, Fernández A, Tregenza T (2007) Genetic differentiation of an endangered capercaillie (Tetrao urogallus) population at the Southern edge of the species range. Conserv Genet 8:659–670CrossRefGoogle Scholar
  50. Rodríguez-Muñoz R, Rodríguez del Valle C, Bañuelos MJ, Mirol P (2015) Revealing the consequences of male-biased trophy hunting on the maintenance of genetic variation. Conserv Genet 16:1375–1394CrossRefGoogle Scholar
  51. Saccheri I, Kuussaari M, Kankare M, Vikman P, Fortelius W, Hanski I (1998) Inbreeding and extinction in a butterfly metapopulation. Nature 392:491–494CrossRefGoogle Scholar
  52. Samis KE, Eckert CG (2007) Testing the abundant center model using range-wide demographic surveys of two coastal dune plants. Ecology 88:1747–1758CrossRefPubMedGoogle Scholar
  53. Schwartz MK, McKelvey KS (2009) Why sampling scheme matters: the effect of sampling scheme on landscape genetic results. Conserv Genet 10:441–452CrossRefGoogle Scholar
  54. Segelbacher G, Paxton RJ, Steinbrück G, Trontelj P, Storch I (2000) Characterization of microsatellites in capercaillie Tetrao urogallus (AVES). Mol Ecol 9:1934–1935CrossRefPubMedGoogle Scholar
  55. Segelbacher G, Storch I, Tomiuk J (2003a) Genetic evidence of capercaillie Tetrao urogallus dispersal sources and sinks in the Alps. Wildlife Biol 9:267–273Google Scholar
  56. Segelbacher G, Höglund J, Storch I (2003b) From connectivity to isolation: genetic consequences of population fragmentation in capercaillie across Europe. Mol Ecol 12:1773–1780CrossRefPubMedGoogle Scholar
  57. Segelbacher G, Strand TM, Quintela M et al (2014) Analyses of historical and current populations of black grouse in Central Europe reveal strong effects of genetic drift and loss of genetic diversity. Conserv Genet 15:1183–1195CrossRefGoogle Scholar
  58. Spielman D, Brook BW, Briscoe DA, Frankham R (2004) Does inbreeding and loss of genetic diversity decrease disease resistance? Conserv Genet 5:439–448CrossRefGoogle Scholar
  59. Storch I (1995) Annual home ranges and spacing patterns of capercaillie in central Europe. J Wildlife Manage 59:392–400CrossRefGoogle Scholar
  60. Storch I (2000) Conservation status and threats to grouse worldwide: an overview. Wildlife Biol 6:195–204Google Scholar
  61. Storch I, Segelbacher G (2000) Genetic correlates of spatial population structure in central European capercaillie Tetrao urogallus and black grouse T. tetrix: a project in progress. Wildlife Biol 6:305–310Google Scholar
  62. Storch I, Bañuelos MJ, Fernández-Gil A, Obeso JR, Quevedo M, Rodríguez-Muñoz R (2006) Subspecies Cantabrian capercaillie Tetrao urogallus cantabricus endangered according to IUCN criteria. J Ornithol 147:653–655CrossRefGoogle Scholar
  63. Strand TM, Segelbacher G, Quintela M, Xiao L, Axelsson T, Höglund J (2012) Can balancing selection on MHC loci counteract genetic drift in small fragmented populations of black grouse? Ecology and evolution 2:341–353CrossRefPubMedPubMedCentralGoogle Scholar
  64. Svobodová J, Segelbacher G, Höglund J (2011) Genetic variation in Black Grouse populations with different lekking systems in the Czech Republic. J Ornithol 152:37–44CrossRefGoogle Scholar
  65. Taylor PD, Fahrig L, Henein K, Merriam G (1993) Connectivity is a vital element of landscape structure. Oikos 68:571–573CrossRefGoogle Scholar
  66. Valière N (2002) GIMLET: a computer program for analysing genetic individual identification data. Mol Ecol Notes 2:377–379Google Scholar
  67. Van Oosterhout C, Hutchinson WF, Wills DP, Shipley P (2004) MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data. Mol Ecol Notes 4:535–538CrossRefGoogle Scholar
  68. Vázquez JF, Pérez T, Quirós F, Obeso JR, Albornoz J, Domínguez A (2012) Population genetic structure and diversity of the endangered Cantabrian Capercaillie. J Wildlife Manage 76:957–965CrossRefGoogle Scholar
  69. Waits LP, Luikart G, Taberlet P (2001) Estimating the probability of identity among genotypes in natural populations: cautions and guidelines. Mol Ecol 10:249–256CrossRefPubMedGoogle Scholar
  70. Wayne RK, Lehman N, Girman D et al (1991) Conservation genetics of the endangered Isle Royale gray wolf. Conserv Biol 5:41–51CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Group of Biodiversity and Conservation GeneticsArgentinian Museum of Natural Sciences ‘Bernardino Rivadavia’Buenos AiresArgentina
  2. 2.Research Unit of Biodiversity (UO-PA-CSIC)University of OviedoMieresSpain
  3. 3.Ecology Unit, Department of Biology of Organisms and SystemsUniversity of OviedoOviedoSpain
  4. 4.Centre for Ecology and Conservation, School of BiosciencesUniversity of ExeterPenrynUK

Personalised recommendations