Unravelling the response of diurnal raptors to land use change in a highly dynamic landscape in northwestern Spain: an approach based on satellite earth observation data

Original Article

Abstract

Land use and land cover change (LULCC) is one of the main components of current anthropogenic global change. Unravelling the ecological response of biodiversity to the combined effect of land use change and other stressors is essential for effective conservation. For this purpose, we used co-inertia analysis to combine LULCC analysis of earth observation satellite data-derived maps and raptor data obtained from road censuses conducted in 2001 and 2014 at sampling unit level (10 km2 spatial resolution), in northwestern Spain (province of Ourense, c. 7281 km2). In addition, habitat suitability models were also computed using ten widely used single-modelling techniques providing an ensemble of predictions at landscape level (four spatial resolutions: 500-m, 1-km, 2-km and 5-km radius around each sighting) for each year and raptor species to analyse the habitat suitability changes in the whole study area through three niche overlap indices. The models revealed an increase in occurrence and habitat suitability of forest raptor species coupled with a strong decrease in species associated with open habitats, mainly heaths and shrub formations. Open-habitat specialist species were negatively affected by the concomitant effects of intensive forest management and a long-lasting trend of rural abandonment coupled with an unusually high frequency of wildfires. Sustainable forest management and agricultural practices should be encouraged by both public and private sectors, through, e.g. policies related to European funds for rural and regional development (FEDER and FEADER programs) to effectively protect threatened habitats and species, and to comply with current environmental legislation. The combined use of satellite imagery and ground-level biodiversity data proved to be a cost-effective and systematic method for monitoring priority habitats and their species in highly dynamic landscapes.

Keywords

BIOMOD2 Co-inertia analysis Habitat suitability modelling Monitoring Raptor conservation Remote sensing 

Supplementary material

10344_2017_1097_MOESM1_ESM.docx (24 kb)
ESM 1(DOCX 23 kb)
10344_2017_1097_MOESM2_ESM.docx (25 kb)
ESM 2(DOCX 24 kb)
10344_2017_1097_MOESM3_ESM.docx (412 kb)
ESM 3(DOCX 411 kb).

References

  1. Allouche O, Tsoar A, Kadmon R (2006) Assessing the accuracy of species distribution models: prevalence, kappa and the true skill statistic (TSS). J Appl Ecol 43:1223–1232CrossRefGoogle Scholar
  2. Andersen DE (2007) Survey techniques. Raptor research and management techniques manual. In: Bird DM, Bildstein KL (eds) Raptor Research Foundation. Hancock House Publishers, Blaine, pp 89–100Google Scholar
  3. Araújo MB, New M (2007) Ensemble forecasting of species distributions. Trends Ecol Evol 22:42–47CrossRefPubMedGoogle Scholar
  4. Araújo MB, Thuiller W, Williams PH, Reginster I (2005) Downscaling European species atlas distributions to a finer resolution: implications for conservation planning. Glob Ecol Biogeogr 14:17–30CrossRefGoogle Scholar
  5. Arcos JM, Bécares J, Villero D, Brotons L, Rodríguez B, Ruiz A (2012) Assessing the location and stability of foraging hotspots for pelagic seabirds: an approach to identify marine important bird areas (IBAs) in Spain. Biol Conserv 156:30–42CrossRefGoogle Scholar
  6. Baeza MJ, De Luís M, Raventós J, Escarré A (2002) Factors influencing fire behaviour in shrublands of different stand ages and the implications for using prescribed burning to reduce wildfire risk. J Environ Manag 65:199–208CrossRefGoogle Scholar
  7. Barbet-Massin M, Jiguet F, Albert CH, Thuiller W (2012) Selecting pseudo-absences for species distribution models: how, where and how many? Methods Ecol Evol 3:327–338CrossRefGoogle Scholar
  8. Bednarz JC (2007) Study design, data management, analysis, and presentation. Raptor research and management techniques manual. In: Bird DM, Bildstein KL (eds) p 73–88Google Scholar
  9. Bird DM, Bildstein KL (eds) (2007) Raptor and management techniques. Raptor Research Foundation. Hancock House Publishers, BlaineGoogle Scholar
  10. Bolker BM, Brooks ME, Clark CJ, Geange SW, Poulsen JR, Stevens MHH, White JSS (2009) Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24:127–135CrossRefPubMedGoogle Scholar
  11. Brook BW, Brook BW, Sodhi NS, Bradshawet CJ (2008) Synergies among extinction drivers under global change. Trends Ecol Evol 23:453–460CrossRefPubMedGoogle Scholar
  12. Burgas D, Byholm P, Parkkima T (2014) Raptors as surrogates of biodiversity along a landscape gradient. J Appl Ecol 51:786–794CrossRefGoogle Scholar
  13. Bustamante J, Seoane J (2004) Predicting the distribution of four species of raptors (Aves: Accipitridae) in southern Spain: statistical models work better than existing maps. J Biogeogr 31:295–306CrossRefGoogle Scholar
  14. Calviño-Cancela M, Rubido-Bará M, Van Etten EJB (2012) Do eucalypt plantations provide habitat for native forest biodiversity? Forest Ecol Manag 270:153–162CrossRefGoogle Scholar
  15. Calvo-Iglesias MS, Fra-Paleo U, Diaz-Varela RA (2009) Changes in farming system and population as drivers of land cover and landscape dynamics: the case of enclosed and semi-openfield systems in northern Galicia (Spain). Landsc Urban Plan 90:168–177CrossRefGoogle Scholar
  16. Chas-Amil ML, Prestemon JP, McClean CJ, Touza J (2015) Human-ignited wildfire patterns and responses to policy shifts. Appl Geogr 56:164–176CrossRefGoogle Scholar
  17. Chas-Amil ML, Touza J, Prestemon JP (2010) Spatial distribution of human-caused forest fires in Galicia (NW Spain). Ecol Envir 137:247–258Google Scholar
  18. Cohen J (1960) A coefficient of agreement for nominal scales. Educ Psychol Meas 20:37–46CrossRefGoogle Scholar
  19. Corbelle-Rico E, Crecente-Maseda R (2008) O abandono de terras: concepto teórico y consecuencias. Rev Gal Econ 17:47–62Google Scholar
  20. Cristofoli S, Monty A, Mahy G (2010) Historical landscape structure affects plant species richness in wet heathlands with complex landscape dynamics. Landscape Urban Plan 98:92–98CrossRefGoogle Scholar
  21. Darling ES, Côté IM (2008) Quantifying the evidence for ecological synergies. Ecol Lett 11:1278–1286CrossRefPubMedGoogle Scholar
  22. Dax T (2005) The redefinition of Europe’s less favoured areas. 3rd annual conference ‘Rural Development in Europe’—funding European rural development in 2007–2013. MPRA paper no. 711Google Scholar
  23. De Cáceres M, Brotons L, Aquilue N, Fortin MJ (2013) The combined effects of land-use legacies and novel fire regimes on bird distributions in the Mediterranean. J Biogeogr 40:1535–1547CrossRefGoogle Scholar
  24. Dicks LV, Ashpole JE, Dänhardt J, James K, Jönsson A, Randall N, Showler DA, Smith RK, Turpie S, Williams D, Sutherland WJ (2013) Farmland conservation: evidence for the effects of interventions in northern and western Europe. Pelagic Publishing, ExeterGoogle Scholar
  25. Dolédec S, Chessel D (1994) Co-inertia analysis: an alternative method for studying species-environment relationships. Freshw Biol 31:277–295CrossRefGoogle Scholar
  26. Donázar JA, Cortés-Avizanda A, Fargallo JA, Margalida A, Moleón M, Morales-Reyes Z, Moreno-Opo R, Pérez-García JM, Sánchez-Zapata JA, Zuberogoitia I, Serrano D (2016) Roles of raptors in a changing world: from flagships to providers of key ecosystem services. Ardeola 63:181–234CrossRefGoogle Scholar
  27. Dray S, Dufour A (2007) The ade4 package: implementing the duality diagram for ecologists. J Stat Softw 22:1–20CrossRefGoogle Scholar
  28. EASAC, European Academies Science Advisor Council (2005) A user’s guide to biodiversity indicators. The Royal Society, LondonGoogle Scholar
  29. Eastman JR (2012) IDRISI Selva. Clark University, Worcester, Clark LabsGoogle Scholar
  30. Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151CrossRefGoogle Scholar
  31. Fagúndez J (2012) Heathlands confronting global change: drivers of biodiversity loss from past to future scenarios. Ann Bot 111:151–172CrossRefPubMedPubMedCentralGoogle Scholar
  32. Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol S 34:487–515CrossRefGoogle Scholar
  33. Farrel L (ed) (1983) Heathland management. Nature Conservancy Council, PterboroughGoogle Scholar
  34. Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49CrossRefGoogle Scholar
  35. Franklin J, Miller JA (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, New YorkGoogle Scholar
  36. Gil-Tena A, Brotons L, Saura S (2009) Mediterranean forest dynamics and forest bird distribution changes in the late 20th century. Glob Change Biol 15:474–485CrossRefGoogle Scholar
  37. Gimingham CH (1994) Lowland heaths of West Europe: management for conservation. Phytocoenologia 24:615–626CrossRefGoogle Scholar
  38. Gonçalves J, Alves P, Pôças I, Marcos B, Sousa-Silva R, Lomba Â, Civantos E, Monteiro A, Honrado J (2015) Combining niche models and remote sensing to explore short-term habitat suitability temporal dynamics and improving biodiversity monitoring, 35th EARSeL Symposium–European Remote Sensing: Progress, Challenges and Opportunities. Stockholm, pp. 15–18Google Scholar
  39. González-Varo JP, Albaladejo RG, Aizen MA, Arroyo J, Aparicio A (2015) Extinction debt of a common shrub in a fragmented landscape. J Appl Ecol 52:580–589CrossRefGoogle Scholar
  40. Groom MJ, Meffe GK, Carroll CR (2006) Principles of conservation biology, 3rd edn. SinauerGoogle Scholar
  41. Guisan A, Graham CH, Elith J, Huettmann F (2007) Sensitivity of predictive species distribution models to change in grain size. Divers Distrib 13:332–340CrossRefGoogle Scholar
  42. He KS, Bradley BA, Cord AF, Rocchini D, Tuanmu M-N, Schmidtlein S, Turner W, Wegmann M, Pettorelli N (2015) Will remote sensing shape the next generation of species distribution models?. Remote Sens Ecol Conserv 1:4–18Google Scholar
  43. Hernandez PA, Graham CH, Master LL, Albert DL (2006) The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography 29:773–785CrossRefGoogle Scholar
  44. Herrando S, Brotons L, Estrada J, Guallar S, Anton M (eds) (2011) Catalan winter bird atlas 2006–2009. Institut Català d’Ornitologia and Lynx Edicions, BarcelonaGoogle Scholar
  45. Irving JA (2002) Warwickshire coventry and solihull local biodiversity action plan. Lowland Heathland. Warwickshire County Council, Warwick, UKGoogle Scholar
  46. Kleijn D, Baquero RA, Clough Y, Díaz M, de Esteban J, Fernández F, Gabriel D, Herzog F, Holzschuh A, Jöhl R, Knop E, Kruess A, Marshall EJ, Steffan-Dewenter I, Tscharntke T, Verhulst J, West TM, Yela JL (2006) Mixed biodiversity benefits of agri-environment schemes in five European countries. Ecol Lett 9:243–254CrossRefPubMedGoogle Scholar
  47. Kröel-Dulay G, Ransijn J, Schmidt IK, Beier C, De Angelis P, De Dato G, Dukes JS, Emmett B, Estiarte M, Garadnai J, Kongstad J, Kovács-Láng E, Larsen KS, Liberati D, Ogaya R, Riis-Nielsen T, Smith AR, Sowerby A, Tietema A, Peñuelas J (2015) Increased sensitivity to climate change in disturbed ecosystems. Nat Commun 6:6682CrossRefPubMedGoogle Scholar
  48. Kuussaari M, Bommarco R, Heikkinen RK, Helm A, Krauss J, Lindborg R, Öckinger E, Pärtel M, Pino J, Rodà F, Stefanescu C, Teder T, Zobel M, Steffan-Dewenter I (2009) Extinction debt: a challenge for biodiversity conservation. Trends Ecol Evol 24:264–271CrossRefGoogle Scholar
  49. Lindner M, Maroschek M, Netherer S, Kreme A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolstöma M, Manfred JL, Marchetti M (2010) Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecol Manag 259:698–709CrossRefGoogle Scholar
  50. Lomba A, Guerra C, Alonso J, Honrado JP, Jongman R, McCracken D (2014) Mapping and monitoring high nature value farmlands: challenges in European landscapes. J Environ Manag 143:140–150CrossRefGoogle Scholar
  51. López-Bao JV, Sazatornil V, Llaneza L, Rodríguez A (2013) Indirect effects on heathland conservation and wolf persistence of contradictory policies that threaten traditional free-ranging horse husbandry. Conserv Lett 6:448–455CrossRefGoogle Scholar
  52. MAGRAMA (2014) Estadísticas de incendios forestales. Retrieved June 12, 2014 from – http://www.magrama.gob.es/es/biodiversidad/temas/defensa-contra-incendios-forestales/
  53. Mairota P, Cafarelli B, Didham R, Lovergine FP, Lucas RM, Nagendra H, Rocchini D, Tarantino C (2015) Challenges and opportunities in harnessing satellite remote-sensing for biodiversity monitoring. Ecol Inform 30:207–214CrossRefGoogle Scholar
  54. Marmion M, Parviainen M, Luoto M, Heikkinen RK, Thuiller W (2009) Evaluation of consensus methods in predictive species distribution modelling. Divers Distrib 15:59–69CrossRefGoogle Scholar
  55. Maruca SL, Jacquez GM (2002) Area-based tests for association between spatial patterns. J Geogr Syst 4:69–83CrossRefGoogle Scholar
  56. Metzger JP, Martensen AC, Dixo M, Bernacci LC, Ribeiro MC, Godoy Teixeira AM, Pardini R (2009) Time-lag in biological responses to landscape changes in a highly dynamic Atlantic forest region. Biol Conserv 142:1166–1177CrossRefGoogle Scholar
  57. Morán-Ordoñez A (2013) Modelado espacio-temporal de los servicios que proporciona la biodiversidad en los matorrales de la Cordillera Cantábrica (NO España). Efectos de los cambios socioeconómicos a varias escalas Ecosistemas 22:124–127Google Scholar
  58. Morán-Ordóñez A, Suárez-Seoane S, Elith J, Calvo L, de Luis E (2012) Satellite surface reflectance improves habitat distribution mapping: a case study on heath and shrub formations in the Cantabrian mountains (NW Spain). Divers Distrib 18:588–602CrossRefGoogle Scholar
  59. Moreira F, Ferreira PG, Rego FC, Bunting S (2001) Landscape changes and breeding bird assemblages in northwestern Portugal: the role of fire. Landsc Ecol 16:175–187CrossRefGoogle Scholar
  60. Mortelliti A, Michael DR, Lindenmayer DB (2015) Contrasting effects of pine plantations on two skinks: results from a large-scale ‘natural experiment’ in Australia. Anim Conserv 18:433–441CrossRefGoogle Scholar
  61. Navarro LM, Pereira HM (2012) Rewilding abandoned landscapes in Europe. Ecosystems 15:900–912CrossRefGoogle Scholar
  62. Newbold T, Hudson LN, Arnell AP, Contu S, De Palma A, Ferrier S, Hill SL, Hoskins AJ, Lysenko I, Phillips HR, Burton VJ, Chng CW, Emerson S, Gao D, Pask-Hale G, Hutton J, Jung M, Sanchez-Ortiz K, Simmons BI, Whitmee S, Zhang H, Scharlemann JP, Purvis A (2016) Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353:288–291CrossRefPubMedGoogle Scholar
  63. O’Toole L (2014) The future of rural Ireland. Can we restore sense of pride and value in managing small marginal farms? Bulletin of the Golden Eagle Trust 6:21–24Google Scholar
  64. Palomino D, Carrascal LM (2006) Urban influence on birds at a regional scale: a case study with the avifauna of northern Madrid province. Landscape Urban Plan 77:276–290CrossRefGoogle Scholar
  65. Petrou ZI, Manakos I, Stathaki T (2015) Remote sensing for biodiversity monitoring: a review of methods for biodiversity indicator extraction and assessment of progress towards international targets. Biodivers Conserv 24:2333–2363CrossRefGoogle Scholar
  66. Pettorelli N, Safi K, Turner W (2014) Satellite remote sensing, biodiversity research and conservation of the future. Philos T Roy Soc B 369:20130190CrossRefGoogle Scholar
  67. Pettorelli N, Vik JO, Mysterud A, Gaillard JM, Tucker CJ, Stenseth NC (2005) Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends Ecol Evol 20:503–510CrossRefPubMedGoogle Scholar
  68. Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259CrossRefGoogle Scholar
  69. Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Ferrier S (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197CrossRefPubMedGoogle Scholar
  70. Pinilla J (2015) Repercusiones de la transformación de un paisaje agrario: El caso del aguilucho cenizo en Tierra de Barros, XIII Congreso de Aguiluchos ibéricos, Valsaín. GREFA & AMUSGoogle Scholar
  71. Plieninger T, van der Horst D, Schleyer C, Bieling C (2014) Sustaining ecosystem services in cultural landscapes. Ecol Soc 19:59CrossRefGoogle Scholar
  72. Queiroz C, Beilin R, Folke C, Lindborg R (2014) Farmland abandonment: threat or opportunity for biodiversity conservation? A global review. Front Ecol Environ 12:288–296CrossRefGoogle Scholar
  73. R Core Team (2014) A language and environment for statistical computing. R Foundation for Statistical Computing, ViennaGoogle Scholar
  74. Ramil-Rego P, Rodríguez Guitián MA, López Castro H, Ferreiro da Costa J, Muñoz Sobrino C (2013) Loss of European dry heaths in NW Spain: a case study. Diversity 5:557–580CrossRefGoogle Scholar
  75. Regos A, D’Amen M, Titeux N, Herrando S, Guisan A, Brotons L (2016a) Predicting the future effectiveness of protected areas for bird conservation in Mediterranean ecosystems under climate change and novel fire regime scenarios. Divers Distrib 22:83–96CrossRefGoogle Scholar
  76. Regos A, Domínguez J, Gil-Tena A, Brotons L, Ninyerola M, Pons X (2016b) Rural abandoned landscapes and bird assemblages: winners and losers in the rewilding of a marginal mountain area (NW Spain). Reg Environ Chang 16:199–211CrossRefGoogle Scholar
  77. Regos A, Ninyerola M, Moré G, Pons X (2015) Linking land cover dynamics with driving forces in mountain landscape of the northwestern Iberian peninsula. J Appl Earth Obs 38:1–14CrossRefGoogle Scholar
  78. Richards JA, Jia X (2006) Remote sensing digital image analysis: an introduction, 4rd edn. Springer, BerlinGoogle Scholar
  79. Rodríguez-Guitián MA, Ramil-Rego P (2007) Revisión de las clasificaciones climáticas aplicadas al territorio gallego desde una perspectiva biogeográfica. Recursos Rurais 1:31–53Google Scholar
  80. Rodríguez-Lado L, Martínez-Cortizas A (2015) Modelling and mapping organic carbon content of topsoils in an Atlantic area of southwestern Europe (Galicia, NW-Spain). Geoderma 245:65–73CrossRefGoogle Scholar
  81. Rodríguez-Lado L, Tapia L (2012) Suitable breeding habitat for golden eagle (Aquila chrysaëtos) in a border of distribution area in northwestern Spain: advantages of using remote sensing information vs land use maps. Vie Milieu 62:77–85Google Scholar
  82. Rodríguez-Lado L, Tapia del Río L, Pérez M, Taboada T, Martínez-Cortizas A, Macías F (2016). Atlas digital de propiedades de suelos de Galicia. Univ. Santiago de Compostela, 112 ppGoogle Scholar
  83. Rosa García R, García U, Osoro K, Celaya R (2011) Ground-dwelling arthropod assemblages of partially improved heathlands according to the species of grazer and grazing regime. Eur J Entomol 108:107–115CrossRefGoogle Scholar
  84. Sánchez-Oliver JS, Rey Benayas JM, Carrascal LM (2015) Low effect of young afforestations on bird communities inhabiting heterogeneous Mediterranean cropland. PeerJ. doi:10.7717/peerj.1453 PubMedPubMedCentralGoogle Scholar
  85. Sedláková I, Chytrý M (1999) Regeneration patterns in a central European dry heathland: effects of burning, sod-cutting and cutting. Plant Ecol 143:77–87CrossRefGoogle Scholar
  86. Sergio F, Newton I, Marchesi L (2005) Top predators and biodiversity. Nature 436:192CrossRefPubMedGoogle Scholar
  87. Simes N, Day J (2003) A practical guide to the restoration and management of lowland heathland. The Royal Society for the Protection of Birds, BedforshireGoogle Scholar
  88. Sirami C, Brotons L, Martin JL (2007) Vegetation and songbird response to land abandonment: from landscape to census plot. Divers Distrib 13:42–45Google Scholar
  89. Sirami C, Brotons L, Martin JL (2009) Do bird spatial distribution patterns reflect population trends in changing landscapes? Landsc Ecol 24:893–906CrossRefGoogle Scholar
  90. Soliño M, Prada A, Vázquez MX (2010) Designing a forest-energy policy to reduce forest fires in Galicia (Spain): a contingent valuation application. J For Econ 16:217–233CrossRefGoogle Scholar
  91. Stoate C, Báldi A, Beja P, Boatman ND, Herzon I, Van Doorn A, De Snoo GR, Rakosy L, Ramwell C (2009) Ecological impacts of early 21st century agricultural change in Europe—a review. J Environ Manag 91:22–46CrossRefGoogle Scholar
  92. Tapia L, Domínguez J, Rodríguez L (2004) Modeling habitat use and distribution of hen harriers (Circus cyaneus) and Montagu's harrier (Circus pygargus) in a mountainous area in Galicia, northwestern Spain. J Raptor Res 38:133–140Google Scholar
  93. Tapia L, Domínguez J, Rodríguez J (2008) Modelling habitat preferences by raptors in two areas of northwestern Spain using different scales and survey techniques. Vie et Milieu 58:257–262Google Scholar
  94. Tapia L, Kennedy P, Mannan B (2007) Habitat sampling. Raptor research and management techniques manual. In: Bird DM &. Bildstein KL, Raptor Research Foundation, Hancock House Publishers, Blaine, pp. 153–169Google Scholar
  95. Thuiller W, Lafourcade B, Engler R, Araújo MB (2009) BIOMOD—a platform for ensemble forecasting of species distributions. Ecography 32:369–373CrossRefGoogle Scholar
  96. Thuiller W, Pironon S, Psomas A, Barbet-Massin M, Jiguet F, Lavergne S, Pearman PB, Renaud J, Zupan L, Zimmermann NE (2014) The European functional tree of bird life in the face of global change. Nat Commun 5:3118CrossRefPubMedPubMedCentralGoogle Scholar
  97. Tucker GM, Evans MI (1997) Habitat for birds in Europe: a conservation strategy for the wider environment. Birdlife International, CambridgeGoogle Scholar
  98. Vázquez de la Cueva A, García del Barrio JM, Ortega Quero M, Sánchez Palomares O (2006) Recent fire regime in peninsular Spain in relation to forest potential productivity and population density. Int J Wildland Fire 15:397–405CrossRefGoogle Scholar
  99. Vázquez-Pumariño X (2009) Plan Integral de Conservación da Gatafornela (Circus cyaneus L.) e a Tartaraña cincenta (Circus pygargus L.). Consellería de Medio Rural. Dirección Xeral da Conservación da Natureza, Xunta de Galicia, Santiago de CompostelaGoogle Scholar
  100. Vázquez-Pumariño, X., Tapia, L., Gil-Carrera, A., 2015. Colapso de la población de Aguilucho cenizo (Circus pygargus) en Galicia entre 2007/2008 y 2015. Metodología, magnitud y posibles causas. XIII Congreso de Aguiluchos ibéricos, Valsaín, GREFA & AMUSGoogle Scholar
  101. Villaescusa R, Díaz R (1998) Segundo Inventario Forestal Nacional (1986–1996). España. Ministerio de Medio Ambiente, ICONA, MadridGoogle Scholar
  102. Villanueva JA (2005) Tercer Inventario Forestal Nacional (1997–2007). España. Ministerio de Medio Ambiente, ICONA, MadridGoogle Scholar
  103. Webb NR (1998) The traditional management of European heathlands. J Appl Ecol 35:987–990CrossRefGoogle Scholar
  104. Wiacek J (2015) Long-term changes of breeding success in Montagu’s harrier Circus pygargus. Belg J Zool 145:103–114Google Scholar
  105. Wisz MS, Hijmans RJ, Peterson AT, Graham CH, Guisan A (2008) Effects of sample size on the performance of species distribution models. Divers Distrib 14:763–773CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  • L. Tapia
    • 1
  • A. Regos
    • 1
    • 2
    • 3
  • A. Gil-Carrera
    • 4
  • J. Domínguez
    • 1
  1. 1.Departamento de Zooloxía, Xenética e Antropoloxía FísicaUniversidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Research Center in Biodiversity and Genetic Resources, Predictive Ecology GroupCIBIO/InBIOVairãoPortugal
  3. 3.InForest Joint Research UnitCTFC-CREAFSolsonaSpain
  4. 4.GREFAMadridSpain

Personalised recommendations