European Journal of Wildlife Research

, Volume 62, Issue 2, pp 151–160 | Cite as

Complementary use of density estimates and hunting statistics: different sides of the same story?

  • Eeva M. SoininenEmail author
  • Eva Fuglei
  • Åshild Ø. Pedersen
Original Article


The use of hunting statistics for population monitoring has often been criticized because such data are affected by several sources of error. Still, for many harvested populations, hunting statistics are the only available data source and cautious use of such data may be valuable for management. Here we assessed to what extent long-term monitoring of Svalbard rock ptarmigan spring densities and hunting statistics (bag size and proportion of juveniles in the hunting bag) reflect similar population fluctuations. We found a decreasing trend in both bag size and proportion of juveniles in the bag, but no trend in ptarmigan spring densities. However, annual fluctuations of ptarmigan spring density and bag size were correlated. Together, these time series indicate that both population abundance (bag size) and recruitment (proportion of juveniles in the bag) are decreasing, but the reproductive component fraction (density of territorial males) is not yet compromised. This biological interpretation remains, however, uncertain due to lack of hunting effort data. Monitoring programs using hunting statistics should therefore critically discuss and evaluate what the hunting statistics reflect and fine-tune the hunter data collection to obtain maximum biological relevance. Still, our results illustrate that the combination of population estimates and hunting statistics can provide more nuanced information about the population status than the density estimates alone.


Harvest Lagopus muta Long-term monitoring Point transect sampling Time series 



We thank all field assistants who have participated in the annual monitoring of the Svalbard rock ptarmigans, especially Marie Lier, Heli Routti, Øystein Overrein, and Nina A. Seifert; the Governor of Svalbard for collecting the hunting statistics, especially the Nature Management advisors Bjarte Benberg and Egil Movik; Audun Igesund and Oddveig Øien Ørvoll for graphical assistance; Gunn-Sissel Jaklin for reviewing the English language; and Arnaud Tarroux for guidance to GIS in R. Rolf Ims, Arnaud Tarroux, Øystein Overrein, and three anonymous reviewers gave helpful comments on the manuscript. Personnel costs were provided by the Fram Centre COAT initiative and the Norwegian Polar Institute. Funding for field work was provided by grants from the Amundsen Center of Arctic Research (The Arctic University of Norway), the Governor of Svalbard, the Norwegian Polar Institute, and the Svalbard Environmental Protection Fund.

Compliance with ethical standards

Ethical statement

The hunting of Svalbard rock ptarmigans comply with the regulations in The Svalbard Environmental Protection Act. This article does not contain any studies where human participants or animals were manipulated by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. Asmyhr L, Willebrand T, Hörnell-Willebrand M (2012) Successful adult willow grouse are exposed to increased harvest risk. J Wildlife Manag 76:940–943. doi: 10.1002/Jwmg.340 CrossRefGoogle Scholar
  2. Bech N, Beltran S, Boissier J, Allienne JF, Resseguier J, Novoa C (2012) Bird mortality related to collisions with ski-lift cables: do we estimate just the tip of the iceberg? Anim Biodivers Conserv 35:95–98Google Scholar
  3. Bivand R, Rundel C, Pebesma E, Hufthammer KO (2014) rgeos: Interface to Geometry Engine - Open Source (GEOS), 0.3-8 edn.,Google Scholar
  4. Born EW, Heilmann A, Holm LK, Laidre KL (2011) Polar bears in Northwest Greenland. An interview survey about the catch and the climate. Museum Tusculanum Press, University of Copenhagen, Denmark, CopengahenGoogle Scholar
  5. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling: Estimating abundance of biological populations. Oxford University PressGoogle Scholar
  6. Buckland ST, Anderson DR, Burnham KP, Laake JL, Thomas L (2004) Advanced distance sampling. Estimating abundance of biological populations. Oxford University PressGoogle Scholar
  7. Calenge C (2006) The package adehabitat for the R software: tool for the analysis of space and habitat use by animals. Ecol Model 197:1035CrossRefGoogle Scholar
  8. Carroll CJ, Merizon RA (2014) Status of grouse, ptarmigan and hare in Alaska, 2014. Alaska Department of Fish and Game. Division of Wildlife Conservation, Palmer, AlaskaGoogle Scholar
  9. Cattadori IM, Haydon DT, Thirgood SJ, Hudson PJ (2003) Are indirect measures of abundance a useful index of population density? The case of red grouse harvesting. Oikos 100:439–446. doi: 10.1034/j.1600-0706.2003.12072.x CrossRefGoogle Scholar
  10. Elvebakk A (1994) A survey of plant associations and alliances from Svalbard. J Veg Sci 5:791–802. doi: 10.2307/3236194 CrossRefGoogle Scholar
  11. Fletcher K, Aebischer NJ, Baines D, Foster R, Hoodless AN (2010) Changes in breeding success and abundance of ground-nesting moorland birds in relation to the experimental deployment of legal predator control. J Appl Ecol 47:263–272. doi: 10.1111/j.1365-2664.2010.01793.x CrossRefGoogle Scholar
  12. Fuglei E, Pedersen ÅØ (2011) Svalbardrypenes trekkruter til vinterområdene. Rapport til Svalbards Miljøfond (in Norwegian)Google Scholar
  13. Hannon SJ (1983) Spacing and Breeding Density of Willow Ptarmigan in Response to an Experimental Alteration of Sex-Ratio. J Anim Ecol 52:807–820. doi: 10.2307/4455 CrossRefGoogle Scholar
  14. Hansen BB et al (2013) Climate events synchronize the dynamics of a resident vertebrate community in the High Arctic. Science 339:313–315. doi: 10.1126/science.1226766 CrossRefPubMedGoogle Scholar
  15. Hansen BB et al (2014) Warmer and wetter winters: characteristics and implications of an extreme weather event in the High Arctic. Environ Res Lett 9:114021CrossRefGoogle Scholar
  16. Hörnell-Willebrand M, Marcstrom V, Brittas R, Willebrand T (2006) Temporal and spatial correlation in chick production of willow grouse Lagopus lagopus in Sweden and Norway. Wildlife Biol 12:347–355. doi: 10.2981/0909-6396(2006)12[347:Tascic]2.0.Co;2 CrossRefGoogle Scholar
  17. Imperio S, Bionda R, Viterbi R, Provenzale A (2013) Climate change and human disturbance can lead to local extinction of alpine rock ptarmigan: new insight from the western Italian Alps. PLoS ONE 8:e81598. doi: 10.1371/journal.pone.0081598 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Imperio S, Ferrante M, Grignetti A, Santini G, Focardi S (2010) Investigating population dynamics in ungulates: do hunting statistics make up a good index of population abundance? Wildlife Biol 16:205–214. doi: 10.2981/08-051 CrossRefGoogle Scholar
  19. Ims RA, Jepsen JU, Stien A, Yoccoz NG (2013) Science plan for COAT: Climate Ecological Observatory for Arctic Tundra. Fram Centre, NorwayGoogle Scholar
  20. Johansen BE, Karlsen SR, Tommervik H (2012) Vegetation mapping of Svalbard utilising Landsat TM/ETM plus data. Polar Res 48:47–63. doi: 10.1017/s0032247411000647 CrossRefGoogle Scholar
  21. Kausrud KL et al (2008) Linking climate change to lemming cycles. Nature 456:93–97CrossRefPubMedGoogle Scholar
  22. Keane A, Jones JPG, Milner-Gulland EJ (2011) Encounter data in resource management and ecology: pitfalls and possibilities. J Appl Ecol 48:1164–1173. doi: 10.1111/j.1365-2664.2011.02034.x CrossRefGoogle Scholar
  23. Lande US, Herfindal I, Finne MH, Kastdalen L (2010) Use of hunters in wildlife surveys: does hunter and forest grouse habitat selection coincide? Eur J Wildlife Res 56:107–115. doi: 10.1007/s10344-009-0291-2 CrossRefGoogle Scholar
  24. Lee AM et al (2015) An integrated population model for a long-lived ungulate: more efficient data use with Bayesian methods. Oikos 124:806–816. doi: 10.1111/oik.01924 CrossRefGoogle Scholar
  25. Lehikoinen A, Green M, Husby M, Kalas JA, Lindström A (2014) Common montane birds are declining in northern Europe. J Avian Biol 45:3–14. doi: 10.1111/j.1600-048X.2013.00177.x CrossRefGoogle Scholar
  26. Løvenskiold HL (1964) Avifauna Svalbardensis vol 129. Oslo, NorwayGoogle Scholar
  27. Marques TA, Thomas L, Fancy SG, Buckland ST (2007) Improving estimates of bird density using multiple-covariate distance sampling. Auk 124:1229–1243CrossRefGoogle Scholar
  28. Marty E, Mossoll-Torres M (2012) Point-count method for estimating rock ptarmigan spring density in the Pyrenean chain. Eur J Wildlife Res 58:357–363. doi: 10.1007/s10344-011-0541-y CrossRefGoogle Scholar
  29. Matsuoka SM, Mahon CL, Handel CM, Solymos P, Bayne EM, Fontaine PC, Ralph CJ (2014) Reviving common standards in point-count surveys for broad inference across studies. Condor 116:599–608. doi: 10.1650/Condor-14-108.1 CrossRefGoogle Scholar
  30. Ministry of Climate and Environment (2015) Regulations relating to harvesting of the fauna on Svalbard. Accessed 24.02.2015
  31. Nielsen OK (1999) Gyrfalcon predation on ptarmigan: numerical and functional responses. J Anim Ecol 68:1034–1050. doi: 10.1046/j.1365-2656.1999.00351.x CrossRefGoogle Scholar
  32. Overrein Ø (2014) Status for høstbare viltarter på Svalbard – Helhetlig strategi for kunnskapsinnhenting (in Norwegian). Norwegian Polar Institute, NorwayGoogle Scholar
  33. Parker H, Ottesen H, Knudsen E (1985) Age determination in Svalbard ptarmigan Lagopus mutus hyperboreus. Polar Res 3:125–126CrossRefGoogle Scholar
  34. Pedersen HC, Steen H, Kastdalen L, Broseth H, Ims RA, Svendsen W, Yoccoz NG (2004) Weak compensation of harvest despite strong density-dependent growth in willow ptarmigan. P R Soc B 271:381–385. doi: 10.1098/rspb.2003.2599 CrossRefGoogle Scholar
  35. Pedersen ÅØ, Bårdsen BJ, Yoccoz NG, Lecomte N, Fuglei E (2012) Monitoring Svalbard rock ptarmigan: distance sampling and occupancy modeling. J Wildlife Manag 76:308–316. doi: 10.1002/jwmg.276 CrossRefGoogle Scholar
  36. Pedersen ÅØ, Jepsen JU, Yoccoz NG, Fuglei E (2007) Ecological correlates of the distribution of territorial Svalbard rock ptarmigan (Lagopus muta hyperborea). Can J Zool 85:122–132CrossRefGoogle Scholar
  37. Pedersen ÅØ, Overrein Ø, Unander S, Fuglei E (2005) Svalbard Rock Ptarmigan (Lagopus mutus hyperboreus) – a status report. vol 125. Tromsø, NorwayGoogle Scholar
  38. Pedersen ÅØ, Soininen EM, Unander S, Willebrand MH, Fuglei E (2014) Experimental harvest reveals the importance of territoriality in limiting the breeding population of Svalbard rock ptarmigan. Eur J Wildlife Res 60:201–212. doi: 10.1007/s10344-013-0766-z CrossRefGoogle Scholar
  39. Pettorelli N, Cote SD, Gingras A, Potvin F, Huot J (2007) Aerial surveys vs hunting statistics to monitor deer density: the example of Anticosti Island, Quebec, Canada. Wildlife Biol 13:321–327. doi: 10.2981/0909-6396(2007)13[321:Asvhst]2.0.Co;2 CrossRefGoogle Scholar
  40. Potapov R, Potapov E (2011) Willow and Rock Ptarmigan monitoring in Russia: An historic overview. In: Watson RT, Cade TJ, Fuller M, Hunt G, Potapov E (eds) Gyrfalcons and Ptarmigan in a Changing World, Volume II. The Peregrine Fund, Boise, Idaho, USA, pp 213–228Google Scholar
  41. R Core Team (2014) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, AustriaGoogle Scholar
  42. Ranta E, Lindström J, Lindén H, Helle P (2008) How reliable are harvesting data for analyses of spatio-temporal population dynamics? Oikos 117: 1461-1468Google Scholar
  43. Revermann R, Schmid H, Zbinden N, Spaar R, Schröder B (2012) Habitat at the mountain tops: how long can Rock Ptarmigan (Lagopus muta helvetica) survive rapid climate change in the Swiss Alps? A multi-scale approach. J Ornithol 153:891–905. doi: 10.1007/s10336-012-0819-1 CrossRefGoogle Scholar
  44. Rist J, Rowcliffe M, Cowlishaw G, Milner-Gulland EJ (2008) Evaluating measures of hunting effort in a bushmeat system. Biol Conserv 141:2086–2099. doi: 10.1016/j.biocon.2008.06.005 CrossRefGoogle Scholar
  45. Rosenstock SS, Anderson DR, Giesen KM, Leukering T, Carter MF (2002) Landbird counting techniques: current practices and an alternative. Auk 119:46–53. doi: 10.1642/0004-8038(2002)119[0046:Lctcpa]2.0.Co;2 CrossRefGoogle Scholar
  46. Sandercock BK, Martin K, Hannon SJ (2005) Demographic consequences of age-structure in extreme environments: population models for arctic and alpine ptarmigan. Oecologia 146:13–24. doi: 10.1007/s00442-005-0174-5 CrossRefPubMedGoogle Scholar
  47. Sandercock BK, Nilsen EB, Brøseth H, Pedersen HC (2011) Is hunting mortality additive or compensatory to natural mortality? Effects of experimental harvest on the survival and cause-specific mortality of willow ptarmigan. J Anim Ecol 80:244–258. doi: 10.1111/j.1365-2656.2010.01769.x CrossRefPubMedGoogle Scholar
  48. Solberg EJ, Loison A, Saether BE, Strand O (2000) Age-specific harvest mortality in a Norwegian moose Alces alces population. Wildlife Biol 6:41–52Google Scholar
  49. Steen JB, Unander S (1985) Breeding biology of the Svalbard rock ptarmigan Lagopus mutus hyperboreus. Ornis Scand 16:191–197. doi: 10.2307/3676630 CrossRefGoogle Scholar
  50. Storch I (2007a) Conservation status of grouse worldwide: an update. Wildlife Biol 13:5–12. doi: 10.2981/0909-6396(2007)13[5:Csogwa]2.0.Co;2 CrossRefGoogle Scholar
  51. Storch I (2007b) Grouse: Status Survey and Conservation Action Plan 2006–2010. Gland, Switzerland: IUCN and Fordingbridge, UK: World Pheasant AssociationGoogle Scholar
  52. Sutherland WJ (2001) Sustainable exploitation: a review of principles and methods. Wildlife Biol 7:131–140Google Scholar
  53. Thomas L et al (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J Appl Ecol 47:5–14. doi: 10.1111/j.1365-2664.2009.01737.x CrossRefPubMedPubMedCentralGoogle Scholar
  54. Thompson WL, White GC, Gowan C (1998) Monitoring vertebrate populations. Academic PressGoogle Scholar
  55. Unander S, Steen JB (1985) Behavior and social structure in Svalbard rock ptarmigan Lagopus mutus hyperboreus. Ornis Scand 16:198–204CrossRefGoogle Scholar
  56. Walker DA et al (2005) The circumpolar Arctic vegetation map. J Veg Sci 16:267–282CrossRefGoogle Scholar
  57. Wang GM, Hobbs NT, Giesen KM, Galbraith H, Ojima DS, Braun CE (2002) Relationships between climate and population dynamics of white-tailed ptarmigan Lagopus leucurus in Rocky Mountain National Park, Colorado, USA. Clim Res 23:81–87. doi: 10.3354/Cr023081 CrossRefGoogle Scholar
  58. Wann GT, Aldridge CL, Braun CE (2014) Estimates of annual survival, growth, and recruitment of a white-tailed ptarmigan population in Colorado over 43 years. Popul Ecol 56:555–567. doi: 10.1007/s10144-014-0452-3 CrossRefGoogle Scholar
  59. Warren P, Baines D (2011) Evaluation of the distance sampling technique to survey red grouse Lagopus lagopus scoticus on moors in northern England. Wildlife Biol 17:135–142. doi: 10.2981/10-085 CrossRefGoogle Scholar
  60. Watson A, Moss R, Rothery P (2000) Weather and synchrony in 10-year population cycles of rock ptarmigan and red grouse in Scotland. Ecology 81:2126–2136. doi: 10.1890/0012-9658(2000)081[2126:Wasiyp]2.0.Co;2 CrossRefGoogle Scholar
  61. Weeden RB, Theberge JB (1972) The dynamics of a fluctuating population of rock ptarmigan in Alaska. Proceedings Int Ornithologal Congress 15:90–106Google Scholar
  62. Willebrand T, Hörnell-Willebrand M, Asmyhr L (2011) Willow grouse bag size is more sensitive to variation in hunter effort than to variation in willow grouse density. Oikos 120:1667–1673. doi: 10.1111/j.1600-0706.2011.19204.x CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.UiT The Arctic University of NorwayTromsøNorway
  2. 2.Norwegian Polar InstituteTromsøNorway

Personalised recommendations