European Journal of Wildlife Research

, Volume 62, Issue 1, pp 33–42 | Cite as

Wildlife visits to farm facilities assessed by camera traps in a bovine tuberculosis-infected area in France

  • A. Payne
  • S. Chappa
  • J. Hars
  • B. Dufour
  • E. Gilot-Fromont
Original Article


When bovine tuberculosis (bTB) circulates in a multi-host system, it is paramount to characterize the interactions between wildlife and livestock as they may lead to interspecific transmission. To that purpose, we undertook a 1-year survey in 25 farms located in an infected area in the Burgundy region (east central France). We used camera traps deployed on 101 water and food access points located in pastures and farm buildings considered as attractive points for red deer, wild boar, and badgers. For each species, we analyzed the duration of each visit, the number of individuals, their behavior, and the frequency of visits. Wild boar was the most frequent species, with 5.0 visits/100 nights, and their visits occurred most frequently around water sources and in summer. The frequency of visits from red deer was highest at salt licks and in summer. Badger was more frequent in winter and on pasture feed troughs. These results highlight the wide variation in the patterns of contact at the wildlife-cattle interface among the different bTB-susceptible species. Combined with other epidemiological data, these data could be used both to assess the risk of bTB transmission in Burgundy and to implement biosecurity measures.


Camera trap Wildlife-livestock interface Multi-host system Bovine tuberculosis 



The study was financially supported by the Ministère de l’Agriculture de l’Agroalimentaire et de la Forêt, the Conseil Régional de Bourgogne, the Conseil Général de la Côte d’Or, the Fédération Départementale des Chasseurs de Côte d’Or, the Groupement de Défense Sanitaire de Côte d’Or, the Fédération Nationale des Chasseurs and the Office National de la Chasse et de la Faune Sauvage. The authors warmly thank the field assistants from the Fédération Départementale des Chasseurs de Côte d’Or, Julien Philippe, Jonathan Fligny, as well as Lucille Millet for their technical help. We would also like to thank Annie Buchwalter, Amy Welty-Bernard, and Gregory Payne for their help with proofreading the manuscript and Christophe Ferrier for his help with the figures. We are also grateful to the farmers who allowed us to carry out surveys on their farm.

Compliance with ethical standards

Experiments comply with the current French laws.

Conflict of interest

The authors declare that they have no competing interests.


  1. Atwood TC, Weeks HP (2003) Sex-spécific patterns of mineral lick preference in white-tailed deer. Northeast Nat 10(4):409–414CrossRefGoogle Scholar
  2. Barasona JA, VerCauteren KC, Saklou N, Gortazar C, Vicente J (2013) Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Prev Vet Med 111:42–50CrossRefPubMedGoogle Scholar
  3. Barasona JA, Latham MC, Acevedo P, Armenteros JA, Latham ADM, Gortazar C, Carro F, Soriguer RC, Vicente J (2014) Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission. Vet Res 45:122PubMedCentralCrossRefPubMedGoogle Scholar
  4. Berentsen AR, Miller RS, Misiewicz R, Malmberg JL, Dunbar MR (2014) Characteristics of white-tailed deer visits to cattle farms: implications for disease transmission at the wildlife–livestock interface. Eur J Wildl Res 60:161–170CrossRefGoogle Scholar
  5. Biet F, Boschiroli ML, Thorel MF, Guilloteau LA (2005) Zoonotic aspects of Mycobacterium Bovis and Mycobacterium Avium-Intracellulare complex (MAC). Vet Res 36:411–436CrossRefPubMedGoogle Scholar
  6. Böhm M, Hutchings MR, White PCL (2009) Contact networks in a wildlife-livestock host community: identifying high-risk individuals in the transmission of bovine TB among badgers and cattle. PLoS ONE 4(4):1–12CrossRefGoogle Scholar
  7. Bracke MBM (2011) Review of wallowing in pigs: description of the behaviour and its motivational basis. Appl Anim Behav Sci 132(1-2):1–13CrossRefGoogle Scholar
  8. Brook RK, Vander Wal E, van Beest FM, McLachlan SM (2013) Evaluating use of cattle winter feeding areas by elk and white-tailed deer: implications for managing bovine tuberculosis transmission risk from the ground up. Prev Vet Med 108(2-3):137–147CrossRefPubMedGoogle Scholar
  9. Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretic approach, 2dth edn. Springer, HeidelbergGoogle Scholar
  10. Castillo L, Fernandez-Llario P, Mateos C, Carranza J, Benitez-Medina JM, Garcia-Jimenez W, Bermejo-Martin F, Hermoso de Mendoza J (2011) Management practices and their association with Mycobacterium tuberculosis complex prevalence in red deer populations in Southwestern Spain. Prev Vet Med 98(1):58–63CrossRefPubMedGoogle Scholar
  11. Cooper SM, Scott HM, de la Garza GR, Deck AL, Cathey JC (2010) Distribution and interspecies contact of feral swine and cattle on rangeland in South Texas: implications for disease transmission. J Wildl Dis 46(1):152–164CrossRefPubMedGoogle Scholar
  12. Corner LL (2006) The role of wild animal populations in the epidemiology of tuberculosis in domestic animals: how to assess the risk. Vet Microbiol 112(2-4):303–312CrossRefPubMedGoogle Scholar
  13. Corner LL, Murphy D, Gormley E (2010) Mycobacterium bovis infection in the Eurasian badger (Meles Meles): the disease, pathogenesis, epidemiology and control. J Comp Pathol 144:1–24CrossRefPubMedGoogle Scholar
  14. Daszak P, Cunningham A, Hyatt D (2000) Emerging infectious diseases of wildlife-threats to biodiversity and human health. Science 287(5452):443–449CrossRefPubMedGoogle Scholar
  15. Drewe JA, O’Connor HM, Weber N, McDonald RA, Delahay RJ (2013) Patterns of direct and indirect contact between cattle and badgers naturally infected with tuberculosis. Epidemiol Infect 141(7):1–9CrossRefGoogle Scholar
  16. Fediaevsky A, Benet JJ, Boschiroli ML, Hars J (2010) La tuberculose bovine en France en 2010, surveillance et détection accrues. Bull Epidemiol Hebdo Anses 46:3–9Google Scholar
  17. Fine AE, Bolin CA, Gardiner JC, Kaneene JB (2011) A study of the persistence of Mycobacterium bovis in the environment under natural weather conditions in Michigan, USA. Vet. Med. Int. 765430Google Scholar
  18. Furphy C, Costello E, Murphy D, Corner LaL, Gormley E (2012) DNA Typing of Mycobacterium bovis isolates from badgers (Meles meles) culled from areas in Ireland with different levels of tuberculosis prevalence. Vet. Med. Int. 742478Google Scholar
  19. Garnett BT, Delahay RJ, Roper TJ (2002) Use of cattle farm resources by badgers (Meles meles) and risk of bovine tuberculosis (Mycobacterium bovis) transmission to cattle. Proc R Soc Lond B 269:1487–1491CrossRefGoogle Scholar
  20. Garnett BT, Roper TJ, Delahay RJ (2003) Use of cattle troughs by badgers (Meles meles): a potential route for the transmission of bovine tuberculosis (Mycobacterium bovis) to cattle. Appl Anim Behav Sci 80(1):1–8CrossRefGoogle Scholar
  21. Goddard PJ, Summers RW, MacDonald AJ, Murray C, Fawcett AR (2001) Behavioural responses of red deer to fences of five different designs. Appl Anim Behav Sci 73:289–298CrossRefPubMedGoogle Scholar
  22. Gortázar C, Ferroglio E, Hölfe U, Frölich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53:241–256CrossRefGoogle Scholar
  23. Gortazar C, Torres MJ, Acevedo P, Aznar J, Negro JJ, De la Fuente J, Vicente J (2011) Fine-tuning the space, time, and host distribution of mycobacteria in wildlife. BMC Microbiol 11:27PubMedCentralCrossRefPubMedGoogle Scholar
  24. Gortázar C, Delahay RJ, McDonald RA, Boadella M, Wilson GJ, Gavier-Widen D, Acevedo P (2012) The status of tuberculosis in European wild mammals. Mammal Rev 42(3):193–206CrossRefGoogle Scholar
  25. Gortázar C, Diez-Delgado I, Barasona JA, Vicente J, De la Fuente J, Boadella M (2015) The wild side of disease control at the wildlife-livestock-human interface: a review. Front Vet Sci 1:1–12CrossRefGoogle Scholar
  26. Hardstaff JL, Marion G, Hutchings MR, White PCL (2014) Evaluating the tuberculosis hazard posed to cattle from wildlife across Europe. Res Vet Sci 97:S86–S93CrossRefPubMedGoogle Scholar
  27. Hauer A, De Cruz K, Cochard T, Godreuil S, Karoui C, Henault S et al (2015) Genetic evolution of Mycobacterium bovis causing tuberculosis in livestock and wildlife in France since 1978. PLoS ONE 10(2):e0117103PubMedCentralCrossRefPubMedGoogle Scholar
  28. Jackson R, De Lisle GW, Morris RS (1995) A study of the environmental survival of Mycobacterium bovis on a farm in New Zealand. N Z Vet J 43:346–352CrossRefPubMedGoogle Scholar
  29. Judge J, McDonald RA, Walker N, Delahay RJ (2011) Effectiveness of biosecurity measures in preventing badger visits to farm buildings. PLoS ONE 6(12):e28941PubMedCentralCrossRefPubMedGoogle Scholar
  30. Kennedy JF, Jenks JA, Jones RL, Jenkins KJ (1995) Characteristics of mineral licks used by white-tailed deer (Odocoileus virginianus). Am Midl Nat 134(2):324–331CrossRefGoogle Scholar
  31. Knust BM, Wolf PC, Wells SJ (2011) Characterization of the risk of deer-cattle interactions in Minnesota by use of an on-farm environmental assessment tool. Am J Vet Res 72:924–931CrossRefPubMedGoogle Scholar
  32. Kowalczyk R, Zalewski A, Jędrzejewska B (2006) Daily movement and territory use by badgers Meles meles in Bialowieza Primaveral Forest, Poland. Wildl Biol 12(4):385–391CrossRefGoogle Scholar
  33. Kukielka E, Baranosa JA, Cowie CE, Drewe JA, Gortázar C, Cotarelo I, Vicente J (2013) Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Prev Vet Med 112(3):213–221CrossRefPubMedGoogle Scholar
  34. MacKenzie DI, Bailet LL, Nichols DN (2004) Investigating species co-occurrence patterns when species are detected imperfectly. J Anim Ecol 73:546–555CrossRefGoogle Scholar
  35. Martin C, Pastoret PP, Brochier B, Humblet MF, Saegerman C (2011) A survey of the transmission of infectious diseases/infections between wild and domestic ungulates in Europe. Vet Res 42:70PubMedCentralCrossRefPubMedGoogle Scholar
  36. Miller RS, Farnsworth ML, Malmberg JL (2013) Diseases at the livestock-wildlife interface: status, challenges, and opportunities in the United States. Prev Vet Med 110(2):119–132CrossRefPubMedGoogle Scholar
  37. Mullen EM, MacWhite T, Maher PK, Kelly DJ, Marples NM, Good M (2013) Foraging Eurasian badgers Meles meles and the presence of cattle in pastures. Do badgers avoid cattle? Appl Anim Behav Sci 144(3-4):130–137CrossRefGoogle Scholar
  38. O’Connell AF, Nichols JD, Karanth KU (2011) Camera traps in animal ecology. Springer, New YorkCrossRefGoogle Scholar
  39. Parra A, Larrasa J, Garcia A, Alonso JM, Hermoso de Mendoza JM (2005) Molecular epidemiology of bovine tuberculosis in wild animals in Spain: a first factor to risk factor analysis. Vet Microbiol 110:293–300CrossRefPubMedGoogle Scholar
  40. Payne A, Boschiroli ML, Gueneau E, Moyen JL, Rambaud T, Dufour B, Gilot-Fromont E, Hars J (2013) Bovine tuberculosis in ‘Eurasian’ badgers (Meles meles) in France. Eur J Wildl Res 59(3):331–339CrossRefGoogle Scholar
  41. Payne A (2014) Rôle de la faune sauvage dans le système multi-hôtes de Mycobacterium bovis et risque de transmission entre faune sauvage et bovins. Etude expérimentale en Côte d’Or. PhD thesis, Lyon 1 University, Villeurbanne, FranceGoogle Scholar
  42. Phillips CJC, Foster CRW, Morris PA, Teverson R (2003) The transmission of Mycobacterium bovis infection to cattle. Res Vet Sci 74(1):1–15CrossRefPubMedGoogle Scholar
  43. Pruvot M, Seidel D, Boyce MS (2014) What attracts elk onto cattle pasture? Implications for inter-species disease transmission. Prev Vet Med 117(2):326–339CrossRefPubMedGoogle Scholar
  44. Roper TJ (2010) Badger. The New Naturalist Library. Ed Collins. LondonGoogle Scholar
  45. Swann DE, Hass CC, Dalton DC, Wolf SA (2004) Infrared-triggered cameras for detecting wildlife: an evaluation and review. Wildl Soc Bull 32(2):357–365CrossRefGoogle Scholar
  46. Tolhurst BA, Delahay RJ, Walker N, Ward A, Roper TJ (2009) Behaviour of badgers (Meles meles) in farm buildings: opportunities for the transmission of Mycobacterium bovis to cattle? Appl Anim Behav Sci 117(1-2):103–113CrossRefGoogle Scholar
  47. VerCauteren KC, Lavelle MJ, Phillips GE (2008) Livestock protection dogs for deterring deer from cattle and feed. J Wild Manag 72:1443–1448CrossRefGoogle Scholar
  48. Viana M, Mancy R, Biek R, Cleaveland S, Cross PC, Lloyd-Smith JO, Haydon DT (2014). Assembling evidence for identifying reservoirs of infection. Trends Ecol Evol 29(5):270–279. doi: 10.1016/j.tree.2014.03.002
  49. Ward AI, Tolhurst BA, Walker NJ, Roper TJ, Delahay RJ (2008) Survey of badger access to farm buildings and facilities in relation to contact with cattle. Vet Rec 163:107–111CrossRefPubMedGoogle Scholar
  50. Ward AI, Judge J, Delahay RJ (2010) Farm husbandry and badger behavior: opportunities to manage badger to cattle transmission of Mycobacterium bovis? Prev Vet Med 93:2–10CrossRefPubMedGoogle Scholar
  51. Welander J (2000) Spatial and temporal dynamics of wild boar (Sus scrofa) rooting in a mosaic landscape. J Zool 252(2):263–271CrossRefGoogle Scholar
  52. Woodroffe R, Donnelly CA, Johnston WT, Bourne FJ, Cheeseman CL, Clifton-Hadley RS et al (2005) Spatial association of Mycobacterium bovis infection in cattle and badgers Meles meles. J Appl Ecol 42:852–862CrossRefGoogle Scholar
  53. Zanella G, Duvauchelle A, Hars J, Moutou F, Boschiroli ML, Durand B (2008) Patterns of bovine tuberculosis lesions in wild red deer and wild boar. Vet Rec 163:43–47CrossRefPubMedGoogle Scholar
  54. Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effect models and extensions in ecology with R. Ed. Springer, New YorkCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • A. Payne
    • 1
    • 3
    • 4
    • 6
  • S. Chappa
    • 2
  • J. Hars
    • 1
  • B. Dufour
    • 3
  • E. Gilot-Fromont
    • 4
    • 5
  1. 1.Studies and research department, Wildlife disease UnitFrench hunting and wildlife agency (ONCFS)GièresFrance
  2. 2.Burgundy and Franche-Comté local unitFrench hunting and wildlife agency (ONCFS)DijonFrance
  3. 3.Epidemiology Unit EPIMAIAlfort National Veterinary School (ENVA)Maisons-AlfortFrance
  4. 4.CNRS, UMR 5558 LBBELyon 1 UniversityVilleurbanne CEDEXFrance
  5. 5.Veterinary public health unitVetAgro-Sup, MIPIEMarcy-l’EtoileFrance
  6. 6.INRA, Agroecology UMR 1347Dijon CEDEXFrance

Personalised recommendations