European Journal of Wildlife Research

, Volume 61, Issue 2, pp 285–298 | Cite as

Cost-effective nocturnal distance sampling for landscape monitoring of ungulate populations

  • Valentina La Morgia
  • Roberta Calmanti
  • Alessandro Calabrese
  • Stefano Focardi
Original Paper


Estimating the size of ungulate populations dwelling forested habitats is technically difficult and expensive. In particular, population assessment via conventional distance sampling (CDS) at landscape scales is challenging and often discarded for its high costs. The development of a framework for its methodological optimization is mandatory. To tackle this issue, we used survey simulations. For arbitrary-distributed populations, we compared the following: (i) systematic random transect allocation, (ii) random selection of footpaths, and (iii) two-stage sampling selection of footpaths (2, 5, 10 blocks). The performance of two-stage sampling and random footpath selection estimators was similar. Then, we applied previous results to estimate the size of a red deer (Cervus elaphus) population in the Italian Apennines. Using data from a pilot survey, we estimated density via CDS and density surface modeling (DSM), and we quantified survey costs per unit effort. Considering our deer distribution, we finally simulated and evaluated the cost-effectiveness of the abovementioned designs for a range of realistic efforts (25–65 transects). CDS produced a negatively biased and less precise estimate than the corresponding DSM. For an effort of 65 transects, design (ii) estimates were unbiased (coefficient of variation = 0.31), while design (iii) provided negatively biased estimates (coefficient of variation = 0.27). Two-stage sampling designs with few blocks were less expensive than other designs in attaining the same level of precision, and they emerged as a cost-effective survey design. Our simulation approach thus provided managers a readily available tool to improve the estimate of ungulate abundances at a landscape scale.


Density estimation Density surface modeling Red deer Sampling design Survey simulations Two-stage sampling 



Thanks are due to A. Gennai, Foreste Casentinesi Natural Park, for the logistic support during field activities, and to O. Friard, University of Turin, for his informatic support. Two anonymous referees provided very relevant comments to the manuscript.

Supplementary material

10344_2014_898_MOESM1_ESM.pdf (1.8 mb)
ESM 1 (PDF 1886 kb)
10344_2014_898_MOESM2_ESM.pdf (1.3 mb)
ESM 2 (PDF 1303 kb)
10344_2014_898_MOESM3_ESM.pdf (1.3 mb)
ESM 3 (PDF 1292 kb)
10344_2014_898_MOESM4_ESM.pdf (69 kb)
ESM 4 (PDF 68 kb)
10344_2014_898_MOESM5_ESM.pdf (72 kb)
ESM 5 (PDF 72 kb)


  1. Baddeley A, Turner R (2005) spatstat: an R package for analyzing spatial point patterns. J Stat Softw 12:1–42Google Scholar
  2. Binzenhöfer B, Schröder B, Strauss B, Biedermann R, Settele J (2005) Habitat models and habitat connectivity analysis for butterflies and burnet moths—the example of Zygaena carniolica and Coenonympha arcania. Biol Conserv 126:247–259. doi: 10.1016/j.biocon.2005.05.009 CrossRefGoogle Scholar
  3. Borchers DL, Buckland ST, Zucchini W (2002) Estimating animal abundance. Closed populations. Springer-V, BerlinGoogle Scholar
  4. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2001) Introduction to distance sampling: estimating abundance of biological populations. Oxford University Press, OxfordGoogle Scholar
  5. Buckland ST, Anderson DR, Burnham KP, Laake JL, Borchers DL, Thomas L (2004) Advanced distance sampling. Estimating abundance of animal populations. Oxford University Press, OxfordGoogle Scholar
  6. Casella G (2008) Statistical design. Springer, New York. doi: 10.1007/978-0-387-75965-4
  7. CREEM (2007) Primer for density surface modelling. Density Surface Modelling Workshop, 23-25 August 2007. Research Unit for Wildlife Population Assessment, University of St. AndrewsGoogle Scholar
  8. Elphick CS (2008) How you count counts: the importance of methods research in applied ecology. J Appl Ecol 45:1313–1320. doi: 10.1111/j.1365-2664.2008.01545.x CrossRefGoogle Scholar
  9. ESRI (1998) ArcView GIS. Environmental Systems Research Institute Inc., RedlandsGoogle Scholar
  10. Fewster (2011) Variance estimation for systematic designs in spatial surveys. Biometrics 67:1518–1531CrossRefPubMedGoogle Scholar
  11. Fewster RM, Laake JL, Buckland ST (2005) Line transect sampling in small and large regions. Biometrics 61:856–861CrossRefPubMedGoogle Scholar
  12. Fewster RM, Southwell C, Borchers DL, Buckland ST, Pople AR (2008) The influence of animal mobility on the assumption of uniform distances in aerial line-transect surveys. Wildl Res 35:275–288CrossRefGoogle Scholar
  13. Focardi S, De Marinis A, Rizzotto M, Pucci A (2001) Comparative evaluation of thermal infrared imaging and spotlighting to survey wildlife. Wildl Soc Bull 29:133–139Google Scholar
  14. Focardi S, Franzetti B, Ronchi F (2013) Nocturnal distance sampling of a Mediterranean population of fallow deer is consistent with population projections. Wildl Res 40:437–446. doi: 10.1071/WR12218 CrossRefGoogle Scholar
  15. Forcada J, Notarbartolo di Sciara G, Fabbri F (1995) Abundance of fin whales and striped dolphins summering in the Corso-Ligurian Basin. Mammalia 59:127–140CrossRefGoogle Scholar
  16. Franceschi S, Nelli L, Pisani C, Franzoi A, Fattorini L, Meriggi A et al (2014) A Monte Carlo appraisal of plot and distance sampling for surveys of black grouse and rock ptarmigan populations in Alpine protected areas. J Wildl Manage 78(2):359–368CrossRefGoogle Scholar
  17. Franzetti B, Focardi S (2006) La stima di popolazione di ungulati mediante distance sampling e termocamera a infrarossi. Doc. Tec. 26. Min. Politiche Agricole, Alimentari e Forestali - Ist. Naz. Fauna Selvatica, Ozzano Emilia (BO), pp 1–88Google Scholar
  18. Franzetti B, Ronchi F, Marini F, Scacco M, Calmanti R, Calabrese A, Aragno P, Montanaro P, Focardi S (2012) Nocturnal line transect sampling of wild boar (Sus scrofa) in a Mediterranean forest: long-term comparison with capture–mark–resight population estimates. Eur J Wildl Res 58:385–402. doi: 10.1007/s10344-011-0587-x CrossRefGoogle Scholar
  19. Gerrodette T (1987) A power analysis for detecting trends. Ecology 68:1364–1372CrossRefGoogle Scholar
  20. Gibbs JP, Droege S, Eagle P (1998) Monitoring populations of plants and animals. Bioscience 48:935–940. doi: 10.2307/1313297 CrossRefGoogle Scholar
  21. Gill RMA, Thomas ML, Stocker D (1997) The use of portable thermal imaging for estimating deer population density in forest habitats. J Appl Ecol 34:1273–1286CrossRefGoogle Scholar
  22. Gómez de Segura A, Crespo EA, Pedraza SN, Hammond PS, Raga JA (2006) Abundance of small cetaceans in waters of the central Spanish Mediterranean. Mar Biol 150:149–160. doi: 10.1007/s00227-006-0334-0 CrossRefGoogle Scholar
  23. Gómez de Segura A, Hammond P, Cañadas A, Raga J (2007) Comparing cetacean abundance estimates derived from spatial models and design-based line transect methods. Mar Ecol Prog Ser 329:289–299. doi: 10.3354/meps329289 CrossRefGoogle Scholar
  24. GRASS Development Team (2008) Geographic resources analysis support system (GRASS) Software. Open source geospatial foundation project.
  25. Harihar A, Pandav B, MacMillan DC (2014) Identifying realistic recovery targets and conservation actions for tigers in a human-dominated landscape using spatially explicit densities of wild prey and their determinants. Diversity Distrib 1-12. doi: 10.1111/ddi.12174
  26. Hastie TJ, Tibshirani RJ (1990) Generalized additive models. CRC Press, Boca RatonGoogle Scholar
  27. Hedley SL, Buckland ST (2004) Spatial models for line transect sampling. J Agric Biol Environ Stat 9:181–199. doi: 10.1198/1085711043578 CrossRefGoogle Scholar
  28. Herr H, Scheidat M, Lehnert K, Siebert U (2009) Seals at sea: modelling seal distribution in the German bight based on aerial survey data. Mar Biol 156:811–820. doi: 10.1007/s00227-008-1105-x CrossRefGoogle Scholar
  29. Jenkins KJ, Manly BFJ (2008) A double-observer method for reducing bias in faecal pellet surveys of forest ungulates. J Appl Ecol 45:1339–1348. doi: 10.1111/j.1365-2664.2008.01512.x CrossRefGoogle Scholar
  30. Laake JL, Borchers DL, Thomas L, Miller D, Bishop J (2012) mrds: Mark-Recapture Distance Sampling (mrds). R package version 2.0.5.
  31. Lyons JE, Runge MC, Laskowski HP, Kendall WL (2008) Monitoring in the context of structured decision-making and adaptive management. J Wildl Manage 72:1683–1692. doi: 10.2193/2008-141 CrossRefGoogle Scholar
  32. Marini F, Franzetti B, Calabrese A, Cappellini S, Focardi S (2009) Response to human presence during nocturnal line transect surveys in fallow deer (Dama dama) and wild boar (Sus scrofa). Eur J Wildl Res 55:107–115. doi: 10.1007/s10344-008-0222-7 CrossRefGoogle Scholar
  33. Marques TA, Buckland ST, Bispo R, Howland B (2013) Accounting for animal density gradients using independent information in distance sampling surveys. JISS 22:67–80CrossRefGoogle Scholar
  34. Matern B (1986) Spatial variation. Lecture notes in statistics. Springer, New YorkGoogle Scholar
  35. Miller DL, Burt ML, Rextad EA, Thomas L (2013) Spatial models for distance sampling data: recent developments and future directions. Meth Ecol Evol 4:1001–1010. doi: 10.1111/2041-210X.12105 CrossRefGoogle Scholar
  36. Morellet N, Champely S, Gaillard J, Ballon P, Boscardin Y (2001) The browsing index : new tool uses browsing pressure to monitor deer populations. Wildl Soc Bull 29:1243–1252Google Scholar
  37. Pollard JH, Buckland ST (2004) Adaptive distance sampling surveys. In: Buckland ST, Anderson DR, Burnham KP et al (eds) Advanced distance sampling: estimating the abundance of biological populations. Oxford University Press, Oxford, pp 229–259Google Scholar
  38. Pollock KH, Nichols JD, Simons TR et al (2002) Large scale wildlife monitoring studies: statistical methods for design and analysis. Environmetrics 13:105–119. doi: 10.1002/env.514 CrossRefGoogle Scholar
  39. R Core Team (2013) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna.
  40. Seber GAF (1982) The estimation of animal abundance and related parameters, 2nd ed. Griffin, London. Also reprinted in paperback by Blackburn Press, Caldwell, NJ (2002)Google Scholar
  41. Skalski JR, Ryding KE, Millspaugh J (2005) Wildlife demography: analysis of sex, age, and count data. Elsevier Academic Press, San DiegoGoogle Scholar
  42. Strindberg S, Buckland ST, Thomas L (2004) Design of distance sampling surveys and Geographic Information Systems. In: Buckland ST, Anderson DR, Burnham KP et al (eds) Advanced distance sampling: estimating the abundance of biological populations. Oxford University Press, Oxford, pp 190–228Google Scholar
  43. Taylor BL, Gerrodette T (1993) The uses of statistical power in conservation biology: the vaquita and northern spotted owl. Conserv Biol 7:489–500. doi: 10.1046/j.1523-1739.1993.07030489.x CrossRefGoogle Scholar
  44. Thomas L, Buckland ST, Burnham KP, Anderson DR, Laake JL, Borchers DL, Strindberg S (2002) Distance sampling. Encycl Environmetrics. doi: 10.1002/9780470057339.vad033.pub2 Google Scholar
  45. Thomas L, Buckland ST, Rexstad E, Laake JL, Strindberg S, Hedley SL, Bishop JRB, Marques TA, Burnham KP (2010) Distance software: design and analysis of distance sampling surveys for estimating population size. J Appl Ecol 47:5–14. doi: 10.1111/j.1365-2664.2009.01737.x CrossRefPubMedCentralPubMedGoogle Scholar
  46. Ward AI, White PCL, Critchley CH (2004) Roe deer Capreolus capreolus behaviour affects density estimates from distance sampling surveys. Mamm Rev 34:315–319. doi: 10.1111/j.1365-2907.2004.00046.x CrossRefGoogle Scholar
  47. Winiarski KJ, Burt ML, Rexstad E, Miller DL, Trocki CL, Paton PWC, McWilliams SR (2014) Integrating aerial and ship surveys of marine birds into a combined density surface model: a case study of wintering common loons. Condor 116:149–161CrossRefGoogle Scholar
  48. Wood SN (2006) Generalized additive models: an introduction with R. CRC Press, Boca RatonGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Valentina La Morgia
    • 1
  • Roberta Calmanti
    • 1
  • Alessandro Calabrese
    • 1
  • Stefano Focardi
    • 2
  1. 1.ISPRA, Istituto Superiore per la Protezione e la Ricerca AmbientaleOzzano EmiliaItaly
  2. 2.CNR-ISC, Consiglio Nazionale delle Ricerche, Istituto dei Sistemi ComplessiSesto FiorentinoItaly

Personalised recommendations