European Journal of Wildlife Research

, Volume 60, Issue 6, pp 865–873 | Cite as

The potential capacity of French wildlife rescue centres for wild bird disease surveillance

  • P. Gourlay
  • A. Decors
  • M. Moinet
  • O. Lambert
  • B. Lawson
  • F. Beaudeau
  • S. Assié
Original Paper


Multiple schemes for wildlife disease surveillance have been in operation in France for decades and data on wild bird carcasses presented to the national SAGIR network have been recorded since the 1980s. Over the same period, wildlife rescue centres (WRCs) have admitted thousands of birds each year. However, the reasons for casualty submission have been poorly explored to date. To assess the potential capacity of WRCs to monitor infectious and non-infectious diseases of wild birds in addition to SAGIR, we used Fringillidae and Passeridae data from January 2004 to April 2013 from SAGIR and the WRC of Nantes (CVFSE/Oniris) which is in operation in North-West France. Firstly, the Centre Vétérinaire de la Faune Sauvage et des Ecosystèmes des Pays de la Loire (CVFSE) contributed more than 30 % of all the birds submitted and was complementary to the SAGIR network in terms of species, age of the birds collected, location and date found. Secondly, the CVFSE was able to detect the emergent finch trichomonosis, in addition to the SAGIR network. Some causes of passerine submission were detected by one or other of the two schemes leading to their complementarity in overviewing Fringillidae and Passeridae infectious and non-infectious diseases in France. In order to improve the efficiency of its wild bird disease monitoring and to participate in an effective national and/or European surveillance network, the CVFSE, as for other WRCs, must enhance its diagnostic capabilities, in particular post-mortem examinations and laboratory testing.


Surveillance Disease Wildlife rescue centre Bird Fringillidae Passeridae 



This study used data first from the SAGIR network which is financially supported by the French Federations of Hunters, the French Ministry of Ecology and Sustainable Development, the French Ministry of Agriculture through the French National Hunting and Wildlife Agency and the Regional Councils through their local veterinary laboratories. We also used data from the Centre Vétérinaire de la Faune Sauvage et des Ecosystèmes des Pays de la Loire (CVFSE) which is funded by Nantes Métropole, the Conseil Général de Loire-Atlantique, the Conseil Régional des Pays de la Loire, the Direction Régionale de l’Environnement, de l’Aménagement et du Logement Pays de la Loire and private partners especially Total S.A., Total Raffinage Chimie and Total Raffinage France.

We are grateful to the agents of the Federations of Hunters, the environmental officers of the Office National de la Chasse et de la Faune Sauvage (French National Hunting and Wildlife Agency) and to the public for their assistance with the reporting of mortality incidents, field investigations and carcass collection. Finally, we would like to thank the agents of the local veterinary laboratories, Hubert Ferté and Damien Jouet from the Université de Reims Champagne-Ardenne, Michaël Treilles from the veterinary laboratory of the Manche department, Philippe Berny from the Toxicology Laboratory of the Veterinary School VetAgro Sup and Karin Lemberger from Vet Diagnostics for the SAGIR diagnostic investigations; Jean Chi, Dr Kevin Tyler and Dr Diana Bell at the University of East Anglia for their assistance with PCR testing for T. gallinae and to all the veterinary staff of the CVFSE/Oniris for the CVFSE diagnostic investigations. We thank Tim Hopkins for his comments on an earlier version of this manuscript. We would also like to acknowledge the useful feedback from reviewers which helped to refine the paper.

Ethical standards

The live animals in this study were admitted as sick or injured wild bird casualties to the Pays de la Loire Regional Wildlife and Ecosystem Veterinary Centre for appropriate clinical care. The performed procedures were conducted for diagnostic and medical treatment purposes only. Euthanasia for welfare reasons was performed in accordance with French legislation.

Conflict of interest

The authors declare that they had no conflict of interest in this study.

Supplementary material

10344_2014_853_MOESM1_ESM.pdf (51 kb)
ESM 1 (PDF 50 kb)
10344_2014_853_MOESM2_ESM.pdf (18 kb)
ESM 2 (PDF 17 kb)
10344_2014_853_MOESM3_ESM.pdf (14 kb)
ESM 3 (PDF 14 kb)


  1. AA (2013) Alerte amphibien. Available from Accessed 30 September 2013
  2. AFNOR (2007) Isolement et identification de tout sérovar ou de sérovar(s) spécifiés de salmonelles chez les oiseaux. Norme NF U47-101 Novembre 2007. Méthodes d’analyse en santé animale. Association Française de Normalisation, La Plaine Saint Denis, 34pGoogle Scholar
  3. AWHN (2013) Annual report 2011/12. Australian Wildlife Health Network. Available from Accessed 17 October 2013
  4. Berny P, Gaillet J-R (2008) Acute poisoning of red kites (Milvus milvus) in France: data from the SAGIR network. J Wildl Dis 44:417–426PubMedCrossRefGoogle Scholar
  5. Brown P, Turnbull G, Charman S, Charlton AJ, Jones A (2005) Analytical methods used in the United Kingdom Wildlife Incident Investigation Scheme for the detection of animal poisoning by pesticides. J Assoc Off Anal Chem Int 88:204–220Google Scholar
  6. Burton DL, Doblar KA (2004) Morbidity and mortality of urban wildlife in the midwestern United States. P 4th Int Urb Wild Symp, Shaw et al., Eds. 171-181Google Scholar
  7. CCWHC (2013) Annual report 12/13. Canadian Cooperative Wildlife Health Centre. Available from Accessed 17 October 2013
  8. Chi JF, Lawson B, Durrant C, Beckmann K, John S, Alrefaei AF et al (2013) The finch epidemic strain of Trichomonas gallinae is predominant in Bristish non-passerines. Parasitology. doi: 10.1017/S0031182013000930 PubMedGoogle Scholar
  9. Cox-Witton K, Reiss A, Woods R, Grillo V, Baker RT, Blyde DJ et al (2014) Emerging infectious diseases in free-ranging wildlife—Australian zoo based wildlife hospitals contribute to national surveillance. PLoS ONE 9(5):e95127. doi: 10.1371/journal.pone.0095127 PubMedCentralPubMedCrossRefGoogle Scholar
  10. Cunningham AA, Lawson B, Bennett M, Chantrey J, Kirkwood JK, Pennycott TW et al (2005) Garden bird health. Vet Rec 156:656PubMedCrossRefGoogle Scholar
  11. Cunningham AA, Lawson B, Hopkins T, Toms M, Wormald K, Peck K (2014) Monitoring diseases in garden wildlife. Vet Rec 174:126. doi: 10.1136/vr.g1295 PubMedCrossRefGoogle Scholar
  12. Duff JP, Pennycott TW, Willmington JA, Robertson SI (2007) Emergence of garden bird trichomonosis. Vet Rec 161:828PubMedGoogle Scholar
  13. Duncan C, Backus L, Lynn T, Powers B, Salman M (2008) Passive, opportunistic wildlife disease surveillance in the Rocky Mountain Region, USA. Transbound Emerg Dis 55:308–314. doi: 10.1111/j.1865-1682.2008.01039.x PubMedCrossRefGoogle Scholar
  14. Eidson M, Komar N, Sorhage F, Nelson R, Talbot T, Mostashari F et al (2001) Crow deaths as a sentinel surveillance system for West Nile virus in the Northeastern United States, 1999. Emerg Infect Dis 7:615–620PubMedCentralPubMedCrossRefGoogle Scholar
  15. ELIZ (2013) Entente de lutte interdépartementale contre les zoonoses. Available from Accessed 30 September 2013
  16. Forzan MJ, Vanderstichel R, Melekhovets YF, McBurney S (2010) Trichomonosis in finches from the Canadian Maritime provinces—an emerging disease. Can Vet J 51:391–396PubMedCentralPubMedGoogle Scholar
  17. Foster G, Ross HM, Pennycott TW, Hopkins GF, McLaren IM (1998) Isolation of Escherichia coli O86:K61 producing cyto-lethal distending toxin from wild birds of the finch family. Lett Appl Microbiol 26:395–398PubMedCrossRefGoogle Scholar
  18. Fourel I, Hugnet C, Goy-Thollot I, Berny P (2010) Validation of a new LC-MS-MS ion-trap technique for the simultaneous determination of 13 anticoagulant rodenticides, drugs, or natural products. J Anal Toxicol 34:95–102PubMedCrossRefGoogle Scholar
  19. Ganas P, Jaskulska B, Lawson B, Zadravec M, Hess M, Bilic I (2013) Multi-locus sequence typing confirms the clonality of Trichomonas gallinae isolates circulating in European finches. Parasitology 13:1–10. doi: 10.1017/S0031182013002023 Google Scholar
  20. Giovannini S, Pewsner M, Hüssy D, Hächler H, Ryser-Degiorgis M-P, von Hirschheydt J, Origgi FC (2013) Epidemic of Salmonellosis in Passerine birds in Switzerland with spillover to domestic cats. Vet Pathol 50:597–606PubMedCrossRefGoogle Scholar
  21. Green D, Hines M, Russell R, Sleeman J (2013) 2011 Report of selected wildlife diseases. U.S. Geological Survey, National Wildlife Health Centre. Available from Accessed 17 October 2013
  22. Hall AJ, Saito EK (2008) Avian wildlife mortality events due to Salmonellosis in the United States, 1985-2004. J Wildl Dis 44:585–593PubMedCrossRefGoogle Scholar
  23. Hars J, Ruette S, Benmergui M, Fouque C, Fournier J-Y, Legouge A et al (2008) The epidemiology of the highly pathogenic H5N1 avian influenza in mute swans (Cygnus olor) and other Anatidae in the Dombes region (France), 2006. J Wildl Dis 44:811–823PubMedCrossRefGoogle Scholar
  24. Hartup BK, Dhondt AA, Sydenstricker KV, Hochachka WM, Kollias GV (2001) Host range and dynamics of mycoplasmal conjunctivitis among birds in North America. J Wildl Dis 37:72–81PubMedCrossRefGoogle Scholar
  25. Hochachka WM, Dhondt AA (2000) Density-dependent decline of host abundance resulting from a new infectious disease. Proc Natl Acad Sci U S A 97:5303–5306PubMedCentralPubMedCrossRefGoogle Scholar
  26. Jennings AR (1961) An analysis of 1,000 deaths in wild birds. Bird Study 8:25–31. doi: 10.1080/00063656109475985 CrossRefGoogle Scholar
  27. Kuiken T, Ryser-Degiorgis M-P, Gavier-Widén D, Gortazar C (2011) Establishing a European network for wildlife health surveillance. Rev Sci Tech OIE 30:755–761Google Scholar
  28. Lambert O (2013) Centre Vétérinaire de la Faune Sauvage et des Ecosystèmes des Pays de la Loire – Rapport d’activités 2012. Available from Accessed 30 September 2013
  29. Lawson B, Howard T, Kirkwood JK, Macgregor SK, Perkins M, Robinson RA et al (2010) The epidemiology of salmonellosis in garden birds in England and Wales, 1993 to 2003. EcoHealth 7(3):294–306. doi: 10.1007/s10393-010-0349-3 PubMedCrossRefGoogle Scholar
  30. Lawson B, Robinson RA, Neimanis A, Handeland K, Isomursu M, Agren EO et al (2011) Evidence of spread of the emerging infectious disease finch trichomonosis, by migrating birds. EcoHealth 8(2):143–153. doi: 10.1007/s10393-011-0696-8 PubMedCrossRefGoogle Scholar
  31. Lawson B, Robinson RA, Colvile KM, Peck KM, Chantrey J, Pennycott TW (2012) The emergence and spread of finch trichomonosis in the British Isles. Philos T Roy Soc B 367:2852–2863CrossRefGoogle Scholar
  32. Lawson B, de Pinna E, Horton RA, Macgregor SK, John SK, Chantrey J et al (2014) Epidemiological evidence that garden birds are a source of human salmonellosis in England and Wales. PLoS ONE 9(2):e88968. doi: 10.1371/journal.pone.0088968 PubMedCentralPubMedCrossRefGoogle Scholar
  33. Lemarchand C, Rosoux R, Penide ME, Berny P (2012) Tissue concentrations of pesticides, PCBs and metals among ospreys, Pandion haliaetus, collected in France. Bull Environ Contam Toxicol 88:89–93PubMedCrossRefGoogle Scholar
  34. LPO (2013a) LPO Mission Rapaces. Available from Accessed 30 September 2013
  35. LPO (2013b) Centres de sauvegarde LPO. Available from Accessed 30 September 2013
  36. Mastain O, Decors A, Berny P, Millot F (2011) « De la difficulté de la relation cause à effet en toxicovigilance animale ». In: Colloque de la Société française d’Ecotoxicologie Fondamentale et Appliquée, 22 juin 2011, ParisGoogle Scholar
  37. Molina-Lopez RA, Casal J, Darwich L (2011) Causes of morbidity in wild raptor populations admitted at a wildlife rehabilitation centre in Spain from 1995-2007: a long term retrospective study. PLoS ONE 6(9):e24603. doi: 10.1371/journal.pone.0024603 PubMedCentralPubMedCrossRefGoogle Scholar
  38. Mörner T, Obendorf DL, Artois M, Woodford MH (2002) Surveillance and monitoring of wildlife diseases. Rev Sci Tech OIE 21:67–76Google Scholar
  39. Neimanis AS, Handeland K, Isomursu M, Agren E, Mattsson R, Hamnes IS et al (2010) First report of epizootic trichomoniasis in wild finches (Family Fringillidae) in Southern Fennoscandia. Avian Dis 54:136–141PubMedCrossRefGoogle Scholar
  40. Oaks JL, Besser TE, Walk ST, Gordon DM, Beckmen KB, Burek KA et al (2010) Escherichia albertii in wild and domestic birds. Emerg Infect Dis 16:638–644. doi: 10.3201/eid1604.090695 PubMedCentralPubMedCrossRefGoogle Scholar
  41. ONCFS (2013) Problématiques d’étude et recherches de l’équipe : Unité Sanitaire de la Faune. Available from Accessed 30 September 2013
  42. Pennycott TW, Ross HM, McLaren IM, Park A, Hopkins GF, Foster G (1998) Causes of death of wild birds of the family Fringillidae in Britain. Vet Rec 143:155–158PubMedCrossRefGoogle Scholar
  43. Pennycott TW, Mather HA, Bennett G, Foster G (2010) Salmonellosis in garden birds in Scotland, 1995 to 2008: geographic region, Salmonella enteric phage type and birds species. Vet Rec 166:419–421PubMedCrossRefGoogle Scholar
  44. Peters M, Kilwinski J, Reckling D, Henning K (2009) Gehäufte Todesfälle von wild lebended Grünfinken an Futterstellen infolge Trichomonas gallinae infektionen—ein aktuelles Problem in Norddeutschland. Kleintierpraxis 54:433–438Google Scholar
  45. Randall NJ, Blitvich BJ, Blanchong JA (2012) Efficacy of wildlife rehabilitation centers in surveillance and monitoring of pathogen activity: a case study with West Nile virus. J Wildl Dis 48:646–653PubMedCrossRefGoogle Scholar
  46. Refsum T, Vikoren T, Handeland K, Kapperud G, Holstad G (2003) Epidemiologic and pathologic aspects of Salmonella Typhimurium infection in passerine birds in Norway. J Wildl Dis 39:64–72PubMedCrossRefGoogle Scholar
  47. RNE (2013) Réseau national d’échouage. Available from Accessed 30 September 2013
  48. Robinson RA, Lawson B, Toms MP, Peck KM, Kirkwood JK et al (2010) Emerging infectious disease leads to rapid population declines of common British birds. PLoS ONE 5(8):e12215. doi: 10.1371/journal.pone.0012215 PubMedCentralPubMedCrossRefGoogle Scholar
  49. Sainsbury AW, Kirkwood JK, Bennett PM, Cunningham AA (2001) Status of wildlife health monitoring in the United Kingdom. Vet Rec 148:558–563PubMedCrossRefGoogle Scholar
  50. Sainsbury AW, Armstrong DP, Ewen JG (2012) Chapter 10 Methods of disease risk analysis for reintroduction programmes. Reintroduction biology: integrating science and management. (eds) Ewen JG, Armstrong DP, Parker KA, Seddon PJ; Wiley-Blackwell, 336-359Google Scholar
  51. SFEPM (2013) Les objectifs de l’association. Available from Accessed 30 September 2013
  52. Sleeman JM (2008) Use of Wildlife Rehabilitation Centres as monitors of ecosystem health. In: (eds) Fowler ME, Miller RE, Zoo and Wild Animal Medicine, 97-104Google Scholar
  53. Sleeman JM, Clark EE (2003) Clinical wildlife medicine: a new paradigm for a new century. J Avian Med Surg 17:33–37CrossRefGoogle Scholar
  54. Spalding MG, Forrester DJ (1993) Disease monitoring of free-ranging and released wildlife. J Zoo Wildl Med 24:271–280Google Scholar
  55. Stenkat J, Krautwald-Junghanns M-E, Schmidt V (2013) Causes of morbidity and mortality in free-living birds in an urban environment in Germany. EcoHealth. doi: 10.1007/s10393-013-0868-9 PubMedGoogle Scholar
  56. Stitt T, Mountifield J, Stephen C (2007) Opportunities and obstacles to collecting wildlife disease data for public health purposes: results of a pilot study on Vancouver Island, British Columbia. Can Vet J 48:83–90PubMedCentralPubMedGoogle Scholar
  57. Trocini S, Pacioni C, Warren K, Butcher J, Robertson I (2008) Wildlife disease passive surveillance: the potential role of wildlife rehabilitation centres. Native Animal Rescue Group NSW. Available from Accessed 30 September 2013
  58. UFCS (2013) Union française des centres de sauvegarde de la faune sauvage. Available from Accessed 30 September 2013
  59. Warns-Petit E, Morignat E, Artois M, Calavas D (2010) Unsupervised clustering of wildlife necropsy data for syndromic surveillance. Vet Res 6:56. doi: 10.1186/1746-6148-6-56 Google Scholar
  60. WHMN (2013) Goal of the Wildlife Health Monitoring Network. Available from Accessed 04 November 2013
  61. WildTech (2010) Novel technologies for surveillance of emerging and re-emerging infections of wildlife. Project summary. Available from Accessed 11 April 2014
  62. Zadravec M, Marhold C, Slavec B, Zorman Rojs O, Racnik J, Gruntar I (2012) Trichomonosis in finches in Slovenia. Vet Rec 171:253–254PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Gourlay
    • 1
    • 2
    • 3
  • A. Decors
    • 4
  • M. Moinet
    • 5
  • O. Lambert
    • 1
  • B. Lawson
    • 6
  • F. Beaudeau
    • 2
    • 3
  • S. Assié
    • 2
    • 3
  1. 1.Centre Vétérinaire de la Faune Sauvage et des Ecosystèmes des Pays de la Loire, OnirisEcole Nationale Vétérinaire, Agroalimentaire et de l’Alimentation Nantes-AtlantiqueNantesFrance
  2. 2.INRA, UMR1300 BiologieEpidémiologie et Analyse de Risque en santé animaleNantesFrance
  3. 3.LUNAM Université, OnirisNantesFrance
  4. 4.Réseau SAGIROffice National de la Chasse et de la Faune SauvageLe Perray en YvelinesFrance
  5. 5.Anses, Laboratoire de la rage et de la faune sauvage de NancyUnité Pathologie des Animaux SauvagesMalzévilleFrance
  6. 6.Institute of ZoologyZoological Society of LondonLondonUK

Personalised recommendations