European Journal of Wildlife Research

, Volume 60, Issue 4, pp 699–702 | Cite as

Continuing impacts on red deer from a volcanic eruption in 2011

  • Werner T. FlueckEmail author
Short Communication


In June of 2011, the Puyehue–Cordon Caulle volcanic eruption deposited large amounts of ashes in Chile and Argentina. Although ashes were initially considered innoxious based on water leachates, we found clinical cases of fluoride intoxication in red deer (Cervus elaphus) and domestic herbivores in Argentina. The diagnosis was corroborated by high bone fluoride concentrations. The dynamics of temporal accumulation of fluoride suggested an average increase of 1,000 ppm per year of fluoride in the bone. However, a few deer had fluoride levels, suggesting an accumulation rate of about 3,700 ppm per year. Via recent sampling of deer, we now confirm that bone levels have reached up to 10,396 ppm of fluoride after about 28 months of exposure. Tephra across various sites averaged 548 ppm of fluoride, and due to dry conditions and eolic redeposition of ashes particularly east of the continental divide, clinical fluorosis is expected to continue to intensify. The described impact will reverberate through several aspects of the ecology of the deer, including effects on population dynamics, morbidity, predation susceptibility, as well as other components of the ecosystem, including other herbivores, scavengers, and plant communities.


Cervus elaphus Fluorosis Pathology Red deer Tephra Volcanic eruption 



This research was done on private land within a natural reserve of the Argentine Administración de Parques Nacionales (permit 070-2013) with partial funding stemming from the PIP CONICET grant Nr. 11220110100124. The authors are grateful to Juan Jones, Konrad Bailey and Pio Pigorini, Lalo Martinez, and Ricky Aquirre for facilitating access and allowing us to work on their properties. Logistics were provided by DeerLab, Argentina, and we also thank Swazi New Zealand for protective field garments, Rubén Kodjaian for providing our office with crucial logistics via the Hostería El Retorno, and Beat Fuchs for his dedicated field assistance within clouds of tephra. I thank the two reviewers for very constructive comments.


  1. Araya O, Wittwer F, Villa A, Ducon C (1990) Bovine fluorosis following volcanic activity in the Southern Andes. Vet Rec 126:641–642PubMedGoogle Scholar
  2. Bermúdez A, Delpino D (2011) La actividad el volcan Puyehue y su impacto sobre el territorio de la república Argentina. Primer Informe, Neuquén, CONICET. Accessed 1 November 2012
  3. Cronin SJ, Manoharan V, Hedley MJ, Loganathan P (2000) Fluoride: a review of its fate, bioavailability, and risks of fluorosis in grazed pasture systems in New Zealand. NZ J Agr Res 43:295–321CrossRefGoogle Scholar
  4. Cronin SJ, Neall VE, Lecointre JA, Hedley MJ, Loganathan P (2003) Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. NZ J Volcanol Geotherm Res 121:271–291CrossRefGoogle Scholar
  5. DGA (Dirección General de Aguas) (2012) Informa resultados del programa de monitoreo de emergencia por erupción volcánica en Cordón Caulle. Minuta 7, Ministerio de Obras Publicas, Santiago, Chile. Accessed 1 November 2012
  6. Flueck WT (2013) Effects of fluoride intoxication on teeth of livestock due to a recent volcanic eruption in Patagonia, Argentina. Onl J Vet Res 17:167–176Google Scholar
  7. Flueck WT, Smith-Flueck JM (2008) Age-independent osteopathology in skeletons of a south American cervid, the Patagonian huemul (Hippocamelus bisulcus). J Wildl Dis 44:636–648PubMedCrossRefGoogle Scholar
  8. Flueck WT, Smith-Flueck JM (2011) Recent advances in the nutritional ecology of the Patagonian huemul: implications for recovery. Anim Prod Sci 51:311–326CrossRefGoogle Scholar
  9. Flueck WT, Smith-Flueck JM (2013a) Severe dental fluorosis in juvenile deer linked to a recent volcanic eruption in Patagonia. J Wildl Dis 49:355–366PubMedCrossRefGoogle Scholar
  10. Flueck WT, Smith-Flueck JM (2013b) Temporal kinetics of fluoride accumulation: from fetal to adult deer. E J Wildl Res 59:899–903CrossRefGoogle Scholar
  11. Flueck WT, Smith-Flueck JM, Mincher BJ, Winkel LHE (2014) An alternative interpretation of plasma selenium data from endangered Patagonian huemul deer (Hippocamelus bisulcus). J Wildl Dis, acceptedGoogle Scholar
  12. Garrott RA, Eberhardt LL, Otton JK, White PJ, Chaffee MA (2002) A geochemical trophic cascade in Yellowstone’s geothermal environments. Ecosystems 5:659–666CrossRefGoogle Scholar
  13. Hufner R, Osuna CM (2011) Caracterización de muestras de cenizas volcánicas volcán Puyehue. Doc. C289-CCGG-9IPCA-001-A, INVAP S.E., Bariloche, Argentina. Accessed 1 November 2012
  14. Karstad L (1967) Fluorosis in deer (Odocoileus virginianus). Bull Wildl Dis Assoc 3:42–46CrossRefGoogle Scholar
  15. Kierdorf U, Kierdorf H (2000) The fluoride content of antlers as an indicator of fluoride exposure in red deer (Cervus elaphus): a historical biomonitoring study. Arch Environ Contam Toxicol 38:121–127PubMedCrossRefGoogle Scholar
  16. Kierdorf U, Kierdorf H (2002) Assessing regional variation of environmental fluoride concentrations in western Germany by analysis of antler fluoride content in roe deer (Capreolus capreolus). Arch Environ Contam Toxicol 42:99–104PubMedCrossRefGoogle Scholar
  17. Kierdorf U, Kierdorf H, Sedlacek F, Fejerskov O (1996a) Structural changes in fluorosed dental enamel of red deer (Cervus elaphus L.) from a region with severe environmental pollution by fluorides. J Anat 188:183–195PubMedCentralPubMedGoogle Scholar
  18. Kierdorf H, Kierdorf U, Sedlacek F, Erdelen M (1996b) Mandibular bone fluoride levels and occurrence of fluoride induced dental lesions in populations of wild red deer (Cervus elaphus) from central Europe. Environ Pollut 93:75–81PubMedCrossRefGoogle Scholar
  19. NRC (National Research Council) (2006) Fluoride in drinking water: a scientific review of EPA’s standards. National Academies, Washington DCGoogle Scholar
  20. Richter H, Kierdorf U, Richards A, Kierdorf H (2010) Dentin abnormalities in cheek teeth of wild red deer and roe deer from a fluoride-polluted area in Central Europe. Ann Anat 192:86–95PubMedCrossRefGoogle Scholar
  21. Richter H, Kierdorf U, Richards A, Melcher F, Kierdorf H (2011) Fluoride concentration in dentine as a biomarker of fluoride intake in European roe deer (Capreolus capreolus)—an electron-microprobe study. Arch Oral Biol 56:785–792PubMedCrossRefGoogle Scholar
  22. Rigalli A, Pera LI, Di Loreto V, Brun LR (2007) Determinación de la concentración de flúor en muestras biológicas. Editorial de la Universidad Nacional de Rosario, RosarioGoogle Scholar
  23. Robinette WL, Jones DA, Rogers G, Gashwiler JS (1957) Notes on tooth development and wear for Rocky Mountain mule deer. J Wildl Manag 21:134–153CrossRefGoogle Scholar
  24. Salvaneschi JP, García JR (2009) El bocio endémico en la República Argentina. Antecedentes, extensión y magnitud de la endemia, antes y después del empleo de la sal enriquecida con yodo. Segunda parte. Rev Arg Endocrinol Metabol 46:35–57Google Scholar
  25. Schultz M, Kierdorf U, Sedlacek F, Kierdorf H (1998) Pathological bone changes in the mandibles of wild red deer (Cervus elaphus L.) exposed to high environmental levels of fluoride. J Anat 193:431–442PubMedCentralPubMedCrossRefGoogle Scholar
  26. Suttie JW, Hamilton RJ, Clay AC, Tobin ML, Moore WG (1985) Effects of fluoride ingestion on white-tailed deer (Odocoileus virginianus). J Wildl Dis 21:283–288PubMedCrossRefGoogle Scholar
  27. Taves DR (1980) Fluoride distribution and biological availability in the fallout from Mount St. Helens, 18 to 21 May 1980. Science 210:1352–1354PubMedCrossRefGoogle Scholar
  28. Wilson TM, Stewart C, Bickerton H, Baxter P, Outes AV et al (2013) Impacts of the June 2011 Puyehue–Cordón Caulle volcanic complex eruption on urban infrastructure, agriculture and public health. GNS Sci Rep 2012(20):1–88Google Scholar
  29. Xu Y, Lu C, Zhang X (1994) The effect of fluoride on the level of intelligence in children. Endemic Dis Bull 9:83–84Google Scholar
  30. Zhao W, Zhu H, Yu Z, Aoki K, Misumi J, Zhang X (1998) Long-term effects of various iodine and fluorine doses on the thyroid and fluorosis in mice. Endocr Regul 32:63–70PubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.National Council of Scientific and Technological Research (CONICET)Buenos AiresArgentina
  2. 2.Argentine National Park AdministrationBarilocheArgentina
  3. 3.Swiss Tropical and Public Health InstituteUniversity of BaselBaselSwitzerland

Personalised recommendations