European Journal of Wildlife Research

, Volume 59, Issue 6, pp 795–803 | Cite as

Comparing red deer (Cervus elaphus L.) and wild boar (Sus scrofa L.) dispersal patterns in southern Belgium

  • Céline Prévot
  • Alain Licoppe
Original Paper


This study analyses the natal dispersal of red deer and wild boar in order to compare their dispersal capabilities in southern Belgium and to evaluate the relevance of management unit areas (MUA) designed for their monitoring. Dispersal was studied thanks to a mark-recovery method based on 111 red deer fawns and 1,613 piglets. The recovery rate of ear-tagged animals was 68 and 40 %, respectively. In both species, sub-adult males moved on longer distances (\( \mathop{x}\limits^{-} \) red deer = 4.82+/−4.17 km and \( \mathop{x}\limits^{-} \) wild boar = 4.90+/−5.65 km) than females and juveniles \( \mathop{x}\limits^{-} \)(red deer = 1.84+/−1.46 km and \( \mathop{x}\limits^{-} \) wild boar = 2.49+/−3.74 km). Taking into account the age and sex categories, we found no difference between species in dispersal mean distance. But we observed higher maximal dispersal distances in wild boar compared to red deer. The natal home range mean sizes were 5.29 km2 (+/−4.87) for red deer and 6.23 km2 (+/−4.60) for wild boar. Red deer and wild boar showed similar dispersal rates according to age and sex category: 53 and 42 % in sub-adult males and 14 and 16 % in females and juveniles. Our results confirmed the higher proportion of philopatry in females and juveniles of both species compared to sub-adult males more likely to disperse. Wild boar of any sex or age seemed to be less sensitive than red deer to infrastructure (road, rail, river) network on which the management unit area limits are currently based.


Cervus elaphus Dispersal Home range Mark recovery Sus scrofa 



Management unit area


Very high frequency


Global positioning system


Global system for mobile communications


Minimum convex polygon



This study was supported by the Walloon Government (Operational Directorate—General for Agriculture, Natural resources and Environment). The authors acknowledge the Nature and Forest Department for their constant collaboration and thank the voluntary trappers for their helpful support. The statistical procedures were greatly improved by Alain Riboux. The authors also thank Dr Isabelle Noirot for revision of this manuscript.

Supplementary material

10344_2013_732_MOESM1_ESM.docx (12 kb)
ESM 1 (DOCX 12 kb)


  1. Acevedo P, Vicente J, Hofle U, Cassinello J, Ruiz-Fons F, Gortazar C (2007) Estimation of European wild boar relative abundance and aggregation: a novel method in epidemiological risk assessment. Epidemiol Infect 135(3):519–527PubMedCrossRefGoogle Scholar
  2. Barrios-Garcia MN, Ballari SA (2012) Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biol Invasions 14(11):2283–2300. doi: 10.1007/s10530-012-0229-6 CrossRefGoogle Scholar
  3. Barrowclough GF (1978) Sampling bias in dispersal studies based on finite area. Bird-Banding 49(4):333–341CrossRefGoogle Scholar
  4. Boitani L, Mattei L, Nonis D, Corsi F (1994) Spatial and activity patterns of wild boars in Tuscany, Italy. J Mammal 75:600–612CrossRefGoogle Scholar
  5. Bonenfant C, Gaillard JM, Klein F, Loison A (2002) Sex- and age-dependent effects of population density on life history traits of red deer Cervus elaphus in a temperate forest. Ecography 25:446–458CrossRefGoogle Scholar
  6. Boulanger V, Baltzinger C, Saïd S, Ballon P, Picard JF, Dupouey JL (2009) Ranking temperate woody species along a gradient of browsing by deer. For Ecol Manag 258:1397–1406CrossRefGoogle Scholar
  7. Caley P (1993) Population dynamics of feral pigs (Sus scrofa) in a tropical riverine habitat complex. Wildl Res 20(5):625–636CrossRefGoogle Scholar
  8. Cargnelutti B, Spitz F, Valet G (1992) Analysis of dispersion of wild boar (Sus scrofa) in Southern France. In: “Ongulés/Ungulates 91”. Proc. Intern. Symp. Toulouse, pp.423–425Google Scholar
  9. Casaer J, Licoppe AM (2010) Ungulates and their management in Belgium. In: Apollonio M, Andersen R, Putman R (eds) European ungulates and their management in the 21st Century. Cambridge University Press, Cambridge, pp 184–200. ISBN 9780521760614Google Scholar
  10. Catchpole EA, Fan Y, Morgan BJT, Clutton-Brock TH, Coulson T (2004) Sexual dimorphism, survival and dispersal in red deer. J Agric Biol Environ Stat 9(1):1–26. doi: 10.1198/1085711043172 CrossRefGoogle Scholar
  11. Catt DC, Staines BW (1987) Home range use and habitat selection by red deer (Cerrus elaphus) in a Sitka spruce plantation as determined by radio tracking. J Zool 211(4):681–693. doi: 10.1111/j.1469-7998.1987.tb04479.x CrossRefGoogle Scholar
  12. Cellina S (2008) Effects of supplemental feeding on the body condition and reproductive state of wild boar Sus scrofa, PhD, University of SussexGoogle Scholar
  13. Cellule Etat de l’environnement wallon (2010) Tableau de bord de l’environnement wallon 2010, Edition SPW-DGARNE-DEMNA-DEE (DG: C. Delbeuck) ISBN: 978-2-8056-0017-3. Conception et graphisme: Label saGoogle Scholar
  14. Clobert J, Massot M, Lecomte J, Sorci G, de Fraipont M, Barbault R (1994) Determinants of dispersal behaviour: the common lizard as a case study. In: Vitt L, Pianka R (eds) Lizard ecology: historical and experimental perspectives. Princeton University Press, Princeton, pp 183–206Google Scholar
  15. Clutton-Brock TH (1989) Female transfer and inbreeding avoidance in social mammals. Nature 337:70–72PubMedCrossRefGoogle Scholar
  16. Clutton-Brock TH, Albon SD, Guinness FE (1982) Competition between female relatives in a matrilocal mammal. Nature 300:178–180CrossRefGoogle Scholar
  17. Clutton-Brock TH, Coulson TN, Milner-Gulland EJ, Thomson D, Armstrong H (2002) Sex differences in emigration and mortality affect optimal management of deer populations. Nature 415:633–637PubMedCrossRefGoogle Scholar
  18. Conner L, Plowman B, Millspaugh J, Marzluff J (2001) Using Euclidean distances to assess non-random habitat use. Radio tracking and animal populations. Academic, San Diego, California, pp 275–190CrossRefGoogle Scholar
  19. Côté S, Rooney TP, Tremblay JP, Dussault C, Waller DM (2004) Ecological impacts of deer overabundance. Annu Rev Ecol Evol Syst 35:113–147. doi: 10.1146/annurev.ecolsys.35.021103.105725 CrossRefGoogle Scholar
  20. de la Fuente J, Naranjo V, Ruiz-Fons F, Vicente J, Estrada-Pena A, Almazan C, Kocan KM, Martin MP, Gortazar C (2004) Prevalence of tick-borne pathogens in ixodid ticks (Acari: Ixodidae) collected from European wild boar (Sus scrofa) and Iberian red deer (Cervus elaphus hispanicus) in central Spain. Eur J Wildl Res 50:187–196CrossRefGoogle Scholar
  21. Frantz AC, Bertouille S, Eloy MC, Licoppe A, Chaumont F, Flamand MC (2012) Comparative landscape genetic analyses show a Belgian motorway to be a gene flow barrier for red deer (Cervus elaphus), but not wild boars (Sus scrofa). Mol Ecol 21(4):3445–3457. doi: 10.1111/j.1365-294X.2012.05623.x PubMedCrossRefGoogle Scholar
  22. Geisser H, Reyer HU (2004) Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. J Wildl Manag 68(4):939–946CrossRefGoogle Scholar
  23. Georgii B, Schröder W (1983) Home range and activity patterns of male red deer (Cervus elaphus L.) in the Alps. Oecologia 58:238–248CrossRefGoogle Scholar
  24. Gill RMA (1992) A review of damage by mammals in north temperate forests: 1. deer. Forestry 65:145–169CrossRefGoogle Scholar
  25. Gomez JM, Garcia D, Zamora R (2003) Impact of vertebrate acorn- and seedling-predators on a Mediterranean Quercus pyrenaica forest. For Ecol Manag 180(1-3):125–134. doi: 10.1016/S0378-1127(02)00608-4 CrossRefGoogle Scholar
  26. Gortázar C, Ferroglio E, Höfle U, Frölich K, Vicente J (2007) Diseases shared between wildlife and livestock: a European perspective. Eur J Wildl Res 53:241–256. doi: 10.1007/s10344-007-0098-y CrossRefGoogle Scholar
  27. Greenwood PJ (1980) Mating systems, philopatry and dispersal in birds and mammals. Anim Behav 28:1140–1162CrossRefGoogle Scholar
  28. Groot Bruinderink GWTA, Hazebroek E (1996) Wild boar (Sus scrofa scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. For Ecol Manag 88:71–80CrossRefGoogle Scholar
  29. Harris S, White PCL (1992) Is reduced affiliative rather than increased agonistic behaviour associated with dispersal in red foxes? Anim Behav 44:1085–1089CrossRefGoogle Scholar
  30. Holekamp KE (1984) Natal dispersal in Belding’s ground squirrels (Spermophilus beldingi). Behav Ecol Sociobiol 16:21–30CrossRefGoogle Scholar
  31. Hooge PN, Eichenlaub B (2000) Animal movement extension to Arcview. ver. 2.0. Anchorage, AK: Alaska Science Center, Biological Science Office, U.S. Geological SurveyGoogle Scholar
  32. Ickes K, Dewalt SJ, Thomas SC (2003) Resprouting of woody saplings following stem snap by wild pigs in a Malaysian rain forest. J Ecol 91:222–233. doi: 10.1046/j.1365-2745.2003.00767.x CrossRefGoogle Scholar
  33. Jarnemo A (2011) Male red deer (Cervus elaphus) dispersal during the breeding season. J Ethol 29(2):329–336CrossRefGoogle Scholar
  34. Keuling O, Lauterbach K, Stier N, Roth M (2009) Hunter feedback of individually marked wild boar Sus scrofa L.: dispersal and efficiency of hunting in north eastern Germany. Eur J Wildl Res 56:159–167. doi: 10.1007/s10344-009-0296-x CrossRefGoogle Scholar
  35. Koenig WD, Van Vuren D, Hooge PN (1996) Detectability, philopatry, and the distribution of dispersal distances in vertebrates. Trends Ecol Evol 11:514–517PubMedCrossRefGoogle Scholar
  36. Kramer-Schadt S, Fernandez N, Thulke HH (2007) Potential ecological and epidemiological factors affecting the persistence of classical swine fever in wild boar Sus scrofa populations. Mamm Rev 37:1–20. doi: 10.1111/j.1365-2907.2007.00097.x CrossRefGoogle Scholar
  37. Kuiters AT, Slim PA (2002) Regeneration of mixed deciduous forest in a Dutch forest-heath land, following a reduction of ungulates densities. Biol Conserv 105:65–74CrossRefGoogle Scholar
  38. Kupferschmid AD, Bugmann H (2008) Ungulate browsing in winter reduces the growth of Fraxinus and Acer saplings in subsequent unbrowsed years. Plant Ecol 198(1):121–134CrossRefGoogle Scholar
  39. Licoppe AM (2006) The diurnal habitat used by red deer (Cervus elaphus L.) in the Haute Ardenne. Eur J Wildl Res 52(3):164–170. doi: 10.1007/s10344-006-0027-5 CrossRefGoogle Scholar
  40. Loe LF, Mysterud A, Veiberg V, Langvatn R (2009) Negative density-dependent emigration of males in an increasing red deer population. Proc R Soc 276:2581–2587CrossRefGoogle Scholar
  41. Lowe VPW (2009) Teeth as indicators of age with special reference to Red deer (Cervus elaphus) of known age from Rhum. J Zool 152(2):137–153. doi: 10.1111/j.1469-7998.1967.tb01881.x CrossRefGoogle Scholar
  42. Macdonald DW, Johnson DDP (2001) Dispersal in theory and practice: consequences for conservation biology. In: Clobert J et al (eds) Dispersal. Oxford University Press, Oxford, pp 361–374Google Scholar
  43. Martin C, Pastoret PP, Brochier B, Humblet MF, Saegerman C (2011) A survey of the transmission of infectious diseases/infections between wild and domestic ungulates in Europe. Vet Res 42:70. doi: 10.1186/1297-9716-42-70 PubMedCrossRefGoogle Scholar
  44. Massei G, Genov PV (2004) The environmental impact of wild boar. Galemys, 16(nº especial):135-145Google Scholar
  45. Massei G, Genov PV, Staines B, Gorman ML (1997) Factors influencing home range and activity of wild boar (Sus scrofa) in a Mediterranean costal area. J Zool 242:411–423CrossRefGoogle Scholar
  46. Matschke GH (1967) Aging European wild hogs by dentition. J Wildl Manag 31(1):109–113. doi: 10.2307/3798365 CrossRefGoogle Scholar
  47. McCallum H (2000) Population parameters: estimation for ecological models. Blackwell, LondonGoogle Scholar
  48. Melis C, Szafrańska PA, Jędrzejewska B, Barton K (2006) Biogeographic variation in wild boar (Sus scrofa L.) density in western Eurasia. J Biogeogr 33:803–811CrossRefGoogle Scholar
  49. Milner JM, Bonenfant C, Mysterud A, Gaillard JM, Csanyi S, Stenseth NC (2006) Temporal and spatial development of red deer harvesting in Europe: biological and cultural factors. J Appl Ecol 43:721–734CrossRefGoogle Scholar
  50. Moniteur belge 2011/203564 Accessed 18 Dec 2012
  51. Mysterud A, Coulson T, Stenseth NC (2002) The role of males in the dynamics of ungulate populations. J Anim Ecol 71:907–915CrossRefGoogle Scholar
  52. Newson SE, Johnston A, Renwick AR, Baillie SR, Fuller RJ (2012) Modelling large-scale relationships between changes in woodland deer and bird populations. J Appl Ecol 49:278–286CrossRefGoogle Scholar
  53. Pavlov P, Crome F, Moore L (1992) Feral pigs, rainforest conservation and exotic disease in north Queensland. Wildl Res 19:179–193CrossRefGoogle Scholar
  54. Perrins CM, Overall R (2001) Effect of increasing numbers of deer on bird populations in Wytham Woods, central England. Forestry 74(3):299–309. doi: 10.1093/forestry/74.3.299 CrossRefGoogle Scholar
  55. Putman RJ, Moore NP (1998) Impact of deer in lowland Britain on agriculture, forestry and conservation habitats. Mamm Rev 28(4):141–164CrossRefGoogle Scholar
  56. Sandell M, Agrell J, Erlinge S, Nelson J (1990) Natal dispersal in relation to population density and sex ratio in the field vole, Microtus agrestis. Oecologia 83(2):145–149PubMedCrossRefGoogle Scholar
  57. Schley L, Roper TJ (2003) Diet of wild boar Sus scrofa in Western Europe, with particular reference to consumption of agricultural crops. Mamm Rev 33:43–56CrossRefGoogle Scholar
  58. Scillitani L, Monaco A, Toso S (2010) Do intensive drive hunts affect wild boar (Sus scrofa) spatial behaviour in Italy? Some evidences and management implications. Eur J Wildl Res 56(3):307–318. doi: 10.1007/s10344-009-0314-z CrossRefGoogle Scholar
  59. Simon O, Kugelschafter K, Mörschel F (1998) Effects of hunting on dispersal of red deer – Implications for red deer management in Germany. Zomborszky Z (ed) Advances in deer biology, Proc 4th Intern Deer Biol Congr, Kaposvar, pp 32–35Google Scholar
  60. Sutherland GD, Harestad AS, Price K, Lertzman KP (2000) Scaling of natal dispersal distances in terrestrial birds and mammals. Conserv Ecol 4(1):16Google Scholar
  61. Truvé J, Lemel J (2003) Timing and distance of natal dispersal for wild boar Sus scrofa in Sweden. Wildl Biol 9(1):51–57Google Scholar
  62. Truvé J, Lemel J, Söderberg B (2004) Dispersal in relation to population density in wild boar (Sus scrofa). Galemys 16:75–82Google Scholar
  63. Vieira-Pinto M, Alberto J, Aranha J (2011) Combined evaluation of bovine tuberculosis in wild boar (Sus scrofa) and red deer (Cervus elaphus) from Central–East Portugal. Eur J Wildl Res 57(6):1189–1201CrossRefGoogle Scholar
  64. Wolff JO (1997) Population regulation in mammals: an evolutionary perspective. J Anim Ecol 66(1):1–13CrossRefGoogle Scholar
  65. Wood GW, Barret RH (1979) Status of wild pigs in the United States. Wildl Soc Bull 7:237–246Google Scholar
  66. Zeng Z, Brown JH (1987) A method for distinguishing dispersal from death in mark-recapture studies. J Mammal 68(3):656–665CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Natural and Agricultural Environment Studies DepartmentGemblouxBelgium

Personalised recommendations