European Journal of Wildlife Research

, Volume 59, Issue 2, pp 237–243 | Cite as

Overestimates of maternity and population growth rates in multi-annual breeders

  • Guillaume ChapronEmail author
  • Robert Wielgus
  • Amaury Lambert
Original Paper


There has been limited attention to estimating maternity rate because it appears to be relatively simple. However, when used for multi-annual breeder species, such as the largest carnivores, the most common estimators introduce an upward bias by excluding unproductive females. Using a simulated dataset based on published data, we compare the accuracy of maternity estimates derived from standard methods against estimates derived from an alternative method. We show that standard methods overestimate maternity rates in the presence of unsuccessful pregnancies. Importantly, population growth rates derived from a matrix model parameterized with the biased estimates may indicate increasing populations although the populations are stable or even declining. We recommend the abandonment of the biased standard methods and to instead use the unbiased alternative method for population projections and assessments of population viability.


Maternity rate Bias Grizzly bear Ursus arctos Growth rate 



Funding and support was provided by the Centre National de la Recherche Scientifique Laboratoire d’Ecologie; Museum National d’Histoire Naturelle Département Ecologie et Gestion de la Biodiversité; National Science Foundation; US Department of Energy, Bonneville Power Administration, Fish and Wildlife Program; Université d’Angers; Université Pierre et Marie Curie; Swedish University of Agricultural Sciences; and Washington State University.

Supplementary material

10344_2012_671_MOESM1_ESM.pdf (382 kb)
ESM 1 (DOCX 382 kb)


  1. Akçakaya HR, Burgman MA, Ginzburg LR (1999) Applied population ecology: principles and computer exercises using RAMAS EcoLab 2.0. Sinauer Associates, SunderlandGoogle Scholar
  2. Boyce MS, Blanchard BM, Knight RR, Servheen C (2001) Population viability for grizzly bears: a critical review. International Association for Bear Research and Management - Monograph Series 4Google Scholar
  3. Caswell H (2001) Matrix population models: construction, analysis, and interpretation. Sinauer Associates, SunderlandGoogle Scholar
  4. Chapron G, Quenette PY, Legendre S, Clobert J (2003) Which future for the French Pyrenean brown bear (Ursus arctos) population? An approach using stage-structured deterministic and stochastic models. Comptes Rendus - Biologies 326(suppl 1):S174–S182PubMedCrossRefGoogle Scholar
  5. Devenish Nelson ES, Harris S, Soulsbury CD, Richards SA, Stephens PA (2010) Uncertainty in population growth rates: determining confidence intervals from point estimates of parameters. PLoS One 5(10):e13628. doi: 10.1371/journal.pone.0013628 PubMedCrossRefGoogle Scholar
  6. Eberhardt LL, Blanchard BM, Knight RR (1994) Population trend of the Yellowstone grizzly bear as estimated from reproductive and survival rates. Can J Zool 72(2):360–363CrossRefGoogle Scholar
  7. Garshelis DL, Gibeau ML, Herrero S (2005) Grizzly bear demographics in and around Banff National Park and Kananaskis Country, Alberta. J Wildl Manag 69(1):277–297CrossRefGoogle Scholar
  8. Hovey FW, McLellan BN (1996) Estimating population growth of grizzly bears from the Flathead River drainage using computer simulations of reproduction and survival rates. Can J Zool 74(8):1409–1416CrossRefGoogle Scholar
  9. Karanth UK, Stith BM (1999) Prey depletion as a critical determinant of tiger population viability. In: Seidensticker J, Christie S, Jackson P (eds) Riding the tiger: tiger conservation in human-dominated landscapes. Cambridge University Press, Cambridge, UK, pp 110–113Google Scholar
  10. Kerley LL, Goodrich JM, Miquelle DG, Smirnov EN, Quigley HB, Hornocker MG (2003) Reproductive parameters of wild female Amur (Siberian) tigers (Panthera tigris altaica). J Mammal 84(1):288–298CrossRefGoogle Scholar
  11. Lambert CMS, Wielgus RB, Robinson HS, Katnik DD, Cruickshank HS, Clarke R, Almack J (2006) Cougar population dynamics and viability in the Pacific Northwest. J Wildl Manag 70(1):246–254CrossRefGoogle Scholar
  12. Logan KA, Sweanor LL (2001) Desert puma: evolutionary ecology and conservation of an enduring carnivore. Island Press, CaliforniaGoogle Scholar
  13. Mace RD, Waller JS (1998) Demography and population trend of grizzly bears in the Swan Mountains, Montana. Conserv Biol 12(5):1005–1016CrossRefGoogle Scholar
  14. McLellan BN (1989) Dynamics of a grizzly bear population during a period of industrial resource extraction. III. Natality and rate of increase. Can J Zool 67(8):1865–1868CrossRefGoogle Scholar
  15. McLoughlin PD, Taylor MK, Cluff HD, Gau RJ, Mulders R, Case RL, Boutin S, Messier F (2003a) Demography of barren-ground grizzly bears. Can J Zool 81(2):294–301CrossRefGoogle Scholar
  16. McLoughlin PD, Taylor MK, Cluff HD, Gau RJ, Mulders R, Case RL, Messier F (2003b) Population viability of barren-ground grizzly bears in Nunavut and the Northwest Territories. Arctic 56(2):185–190Google Scholar
  17. Miller SD (1997) Impacts of heavy hunting pressure on the density and demographics of brown bear populations in southcentral Alaska. Federal Aid in Wildlife Restoration, Research Final Report, Study 4.26, June 1997Google Scholar
  18. Owen C, Niemann S, Slotow R (2010) Copulatory parameters and reproductive success of wild leopards in South Africa. J Mammal 91(5):1178–1187CrossRefGoogle Scholar
  19. Pease CM, Mattson DJ (1999) Demography of the Yellowstone grizzly bears. Ecology 80(3):957–975CrossRefGoogle Scholar
  20. Schwartz CC, White GC (2008) Estimating reproductive rates for female bears: proportions versus transition probabilities. Ursus 19(1):1–12CrossRefGoogle Scholar
  21. Schwartz CC, Keating KA, Reynolds Iii HV, Barnes VG Jr, Sellers RA, Swenson JE, Miller SD, McLellan BN, Keay J, McCann R, Gibeau M, Wakkinen WF, Mace RD, Kasworm W, Smith R, Herrero S (2003) Reproductive maturation and senescence in the female brown bear. Ursus 14(2):109–119Google Scholar
  22. Thomson DL, Cooch EG, Conroy MJ (2008) Modeling demographic processes in marked populations. Springer, New YorkGoogle Scholar
  23. Wakkinen WL, Kasworm WF (2004) Demographics and population trends of grizzly bears in the Cabinet-Yaak and Selkirk ecosystems of British Columbia, Idaho, Montana, and Washington. Ursus 15(1):65–75CrossRefGoogle Scholar
  24. Wielgus RB (2002) Minimum viable population and reserve sizes for naturally regulated grizzly bears in British Columbia. Biol Conserv 106(3):381–388CrossRefGoogle Scholar
  25. Wielgus RB, Bunnell FL (1994) Dynamics of a small, hunted brown bear Ursus arctos population in southwestern Alberta, Canada. Biol Conserv 67(2):161–166CrossRefGoogle Scholar
  26. Wielgus RB, Bunnell FL (2000) Possible negative effects of adult male mortality on female grizzly bear reproduction. Biol Conserv 93(2):145–154CrossRefGoogle Scholar
  27. Wielgus RB, Bunnell FL, Wakkinen WL, Zager PE (1994) Population dynamics of Selkirk Mountain grizzly bears. J Wildl Manag 58(2):266–272CrossRefGoogle Scholar
  28. Wielgus RB, Sarrazin F, Ferriere R, Clobert J (2001) Estimating effects of adult male mortality on grizzly bear population growth and persistence using matrix models. Biol Conserv 98(3):293–303CrossRefGoogle Scholar
  29. Williams BK, Nichols JD, Conroy MJ (2002) Analysis and management of animal populations: modeling, estimation, and decision making. Academic, San DiegoGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Guillaume Chapron
    • 1
    • 2
    Email author
  • Robert Wielgus
    • 3
    • 4
  • Amaury Lambert
    • 5
  1. 1.Grimsö Wildlife Research Station, Department of EcologySwedish University of Agricultural SciencesRiddarhyttanSweden
  2. 2.Conservation Biology Division, Institute of Ecology and EvolutionUniversity of BernBernSwitzerland
  3. 3.Département Ecologie et Gestion de la BiodiversitéMuseum National d’Histoire NaturelleParis Cedex 05France
  4. 4.Large Carnivore Conservation Laboratory, Department of Natural Resource SciencesWashington State UniversityPullmanUSA
  5. 5.Laboratoire de Probabilités et Modèles AléatoiresUPMC Université ParisParis Cedex 05France

Personalised recommendations