European Journal of Wildlife Research

, Volume 57, Issue 4, pp 873–885 | Cite as

Basic structural and functional characteristics of the epidermal barrier in wild mammals living in different habitats and climates

  • Wilfried Meyer
  • Judith Schmidt
  • Johannes Kacza
  • Roger Busche
  • Hassan Y. Naim
  • Ralf Jacob
Original Paper


Based on the combination of standard light and transmission electron microscopy, cryo-SEM, immunohistochemistry and a new sensitive glycolipid histochemical technique (5-hexadecanoylaminofluorescein staining, laser scanning microscopy), including densitometrical evaluation, our approach gives for the first time an overview of the specific biology of the epidermal permeability barrier in wild mammals (20 species from five orders), living under varying (aquatic or moist to dry) habitat conditions. The results obtained emphasised that the barrier region in most of the species studied is a continuous zone (thickness, 0.1 and 3 μm) between the upper cells of the stratum granulosum and the inner cells of the stratum corneum conjunctum, normally present as a homogeneous glycolipid layer originating from fusion of lamellar body contents after exocytotic activities of the granular cells. However, this finding did not apply to all of the species studied, i.e., the Wild boar, the Common seal and the three large species with a very thick vital epidermis, the African elephant, the hippopotamus and the common dolphin, exhibited variations from the basic scheme. Densitometric evaluation of the 5-hexadecanoylaminofluorescein staining revealed that reaction intensity was not only generally related to the habitat conditions but also to vital epidermis thickness and hair density. The immunohistochemical demonstration of Na+/H+ exchanger 1 corroborated for all wild mammals studied that this important regulator of pH conditions during barrier formation is continuously produced in the epidermis. The variations in barrier biology observed for some species obviously had to be developed in relation to animal size (or body size area) and hair coat density, but, particularly, by the specific adaptation of certain mammalian groups to the aquatic environment. In the latter case, the typical barrier zone system was lost, as in the hippopotamus or the cetaceans.


Barrier Epidermis Wild mammals Biotope adaptation Glycolipids 



For help with skin material, we are greatly indebted to Prof. Dr. Hermann Ansorge (Goerlitz), Dr. Wolfgang Dreßen (Krefeld), Prof. Dr. Szymon Godynicki (Poznan), the late Jochen Hennig (Springe), Prof. Dr. Milan Klima (Frankfurt/M.), Prof. Dr. Wolfgang Loescher (Hannover), Prof. Dr. Andrea Meyer-Lindenberg (Hannover), Prof. Dr. Klaus Pohlmeyer (Hannover), the late Prof. Dr. Manfred Roehrs (Hannover), Dr. Michael Stede (Cuxhaven) and the late Prof. Dr. Helmut Wilkens (Hannover). The excellent technical assistance of Marion Gaehle and Kerstin Rohn (both University of Veterinary Medicine Hannover) is also gratefully acknowledged.


  1. Aberg KM, Man MQ, Gallo RL, Ganz T, Crumrine D, Brown BE, Choi EH, Kim DK, Schroeder JM, Feingold KR, Elias PM (2008) Co-regulation and interdependence of the mammalian epidermal permeability and antimicrobial barriers. J Invest Dermatol 128:917–925PubMedCrossRefGoogle Scholar
  2. Bayliss High OB (1984) Lipid histochemistry (microscopy handbooks 6). Oxford University Press, OxfordGoogle Scholar
  3. Behne MJ, Meyer JW, Hanson KM, Barry NP, Murata S, Crumrine D, Clegg RW, Gratton E, Holleran WM, Elias PM, Mauro TM (2002) NHE1 regulates the statum corneum permeability barrier homeostasis—microenvironment acidification assessed with fluorescence lifetime imaging. J Biol Chem 277:47399–47406PubMedCrossRefGoogle Scholar
  4. Boeck P (1989) Romeis Mikroskopische Technik, 17th edn. Urban & Schwarzenberg, MuenchenGoogle Scholar
  5. Bollhorn M (1999) Histologische und histochemische Untersuchungen am Integument des Seehunds (Phoca vitulina). Dissertation thesis, University of Veterinary Medicine Hannover, Hannover, GermanyGoogle Scholar
  6. Braff MH, Di Nardo A, Gallo RL (2005) Keratinocytes store the antimicrobial peptide cathelicidin in lamellar bodies. J Invest Dermatol 124:394–400PubMedCrossRefGoogle Scholar
  7. Caussin J, Gooris GS, Janssens M, Bouwstra JA (2008) Lipid organization in human and porcine stratum corneum differs widely, while lipid mixtures with porcine ceramides model human stratum corneum lipid organization very closely. Biochim Biophys Acta Biomembr 1778:1472–1482CrossRefGoogle Scholar
  8. Delacour D, Koch A, Ackermann W, Eude-Le Parco I, Elsaesser HP, Poirier F, Jacob R (2008) Loss of galectin-3 impairs membrane polarisation of mouse enterocytes in vivo. J Cell Sci 121:458–465PubMedCrossRefGoogle Scholar
  9. Denda M, Sokabe T, Fukumi-Tominaga T, Tominaga M (2007) Effects of skin surface temperature on epidermal permeability barrier homeostasis. J Invest Dermatol 127:654–659PubMedCrossRefGoogle Scholar
  10. Denda M, Tsutsumi M, Denda S (2010) Topical application of TRPM8 agonists accelerates skin permeability barrier recovery and reduces epidermal proliferation induced by barrier insult: role of cold-sensitive TRP receptors in epidermal permeability barrier homoeostasis. Exp Dermatol 19:791–795PubMedCrossRefGoogle Scholar
  11. Elias PM (1989) The stratum corneum as an organ of protection: old and new concepts. Curr Probl Dermatol 18:10–21PubMedGoogle Scholar
  12. Elias PM (2007) The skin barrier as an innate immune element. Sem Immunopathol 29:3–14CrossRefGoogle Scholar
  13. Elias PM, Goerke J, Friend DS (1977) Mammalian epidermal barrier layer lipids: composition and influence on structure. J Invest Dermatol 69:535–546PubMedCrossRefGoogle Scholar
  14. Elias PM, Menon GK, Grayson S, Brown BE, Rehfeld SJ (1987) Avian sebokeratocytes and marine mammal lipokeratinocytes: structural, lipid biochemical, and functional considerations. Am J Anat 180:161–177PubMedCrossRefGoogle Scholar
  15. Feingold KR, Schmudt M, Elias PM (2007) The regulation of permeability barrier homeostasis. J Invest Dermatol 127:1574–1576PubMedCrossRefGoogle Scholar
  16. Frisch J, Øritsland NA, Krog J (1974) Insulation of furs in water. Comp Biochem Physiol 47:403–410CrossRefGoogle Scholar
  17. Gerrits PO, Smid L (1983) A new, less toxic polymerisation system for the embedding of soft tissues in glycol methacrylate and subsequent preparing of serial sections. J Microsc 132:81–85PubMedGoogle Scholar
  18. Goldsmith LA (ed) (1991) Physiology, biochemistry, and molecular biology of the skin, 2nd edn. Oxford University Press, New YorkGoogle Scholar
  19. Guan GP, Zhou MN, Xu AE, Kang KF, Liu JF, Wei XD, Li YW, Zhao DK, Hong WS (2008) The skin: an indispensable barrier. Exp Dermatol 17:1059–1062PubMedCrossRefGoogle Scholar
  20. Hachem JP, Crumrine D, Fluhr J, Brown BE, Feingold KR, Elias PM (2003) pH directly regulates epidermal permeability barrier homeostasis, and stratum corneum integrity/cohesion. J Invest Dermatol 121:345–353PubMedCrossRefGoogle Scholar
  21. Hachem JP, Behne M, Aronchik I, Demerjian M, Feingold KR, Elias PM, Mauro TM (2005) Extracellular pH controls NHE1 expression in epidermis and keratinocytes: implications for barrier repair. J Invest Dermatol 125:790–797PubMedCrossRefGoogle Scholar
  22. Hamanaka S, Nakazawa S, Yamanaka M, Uchida Y, Otsuka F (2005) Glucosylceramide accumulates preferentially in lamellar bodies in differentiated keratinocytes. Br J Dermatol 152:426–434PubMedCrossRefGoogle Scholar
  23. Hanstede JG, Gerrits PO (1983) The effects of embedding in water-soluble plastics on the final dimensions of liver sections. J Microsc 131:79–86PubMedGoogle Scholar
  24. Hautzer NW, Wittkuhn JF, McCaughey WTE (1980) Trypsin digestion in immunoperoxidase staining. J Histochem Cytochem 28:52–53PubMedCrossRefGoogle Scholar
  25. Heung LJ, Luberto C, Del Poeta M (2006) Role of sphingolipids in microbial pathogenesis. Infect Immun 74:28–39PubMedCrossRefGoogle Scholar
  26. Holleran WM, Tagaki Y, Menon GK, Legler G, Feingold KR, Elias PM (1993) Processing of epidermal glucosylceramide is required for optimal mammalian cutaneous permeability function. J Clin Invest 91:1656–1664PubMedCrossRefGoogle Scholar
  27. Holleran WM, Tagaki Y, Uchida Y (2006) Epidermal sphingolipids: metabolism, function, and roles in skin disorders. FEBS Lett 580:5456–5466PubMedCrossRefGoogle Scholar
  28. Hornickel I, Kacza J, Schnapper A, Beyerbach M, Schoennagel B, Seeger J, Meyer W (2011) Demonstration of substances of innate immunity in the esophagus epithelium of domesticated mammals. Part I—methods and comparative fixation evaluation. Acta Histochem (in press). doi:10.1016/j.acthis.2009.09.009
  29. Hosogi S, Takemura Y, Miyazaki H, Niisato N, Iwasaki Y, Marunaka Y (2009) Sodium hydrogen exchanger isoform 1 (NHE-1)-dependent proliferation of gastric cancer cells. J Physiol Sci 59(Suppl 1):303Google Scholar
  30. Jennemann R, Sandhoff R, Langbein L, Kaden S, Rothermel U, Gallala H, Sandhoff K, Wiegandt H, Grone HJ (2007) Integrity and barrier function of the epidermis critically depend on glucosylceramide synthesis. J Biol Chem 282:3083–3094PubMedCrossRefGoogle Scholar
  31. Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolality for use in electron microscopy. J Cell Biol 27:137A–138AGoogle Scholar
  32. Koliakos G, Paletas K, Kaloyianni M (2008) NHE-1: a molecular target for signalling and cell matrix interactions. Connect Tissue Res 49:157–161PubMedCrossRefGoogle Scholar
  33. Kuhn RA (2009) Comparative analysis of structural and functional hair coat characteristics, including heat loss regulation, in the Lutrinae (Carnivora: Mustelidae). Ph.D. thesis, University of Hamburg, Hamburg, GermanyGoogle Scholar
  34. Lillie RD, Fullmer HM (1976) Histopathologic technic and practical histochemistry. McGraw-Hill, New YorkGoogle Scholar
  35. Lillywhite HB (2006) Water relations of tetrapod integument. J Exp Biol 209:202–226PubMedCrossRefGoogle Scholar
  36. Lillywhite HB, Stein BR (1987) Surface sculpturing and water retention of elephant skin. J Zool 211:727–734CrossRefGoogle Scholar
  37. Luft JH (1961) Improvements in epoxy resin embedding methods. J Biophys Biochem Cytol 9:409–414PubMedCrossRefGoogle Scholar
  38. Menon GK, Kligman AM (2009) Barrier functions of human skin: a holistic view. Skin Pharmacol Physiol 22:178–189PubMedCrossRefGoogle Scholar
  39. Menon G, Grayson S, Brown BE, Elias PM (1986) Lipokeratinocytes of the epidermis of a cetaceen (Phocena phocena). Histochemistry, ultrastructure, and lipid composition. Cell Tissue Res 244:385–394PubMedCrossRefGoogle Scholar
  40. Meyer W (1986) Die Haut des Schweines (The porcine integument). Schlüter, HannoverGoogle Scholar
  41. Meyer W (2010) The integument of dolphins (Animal science, issues and professions series). Nova Science, New YorkGoogle Scholar
  42. Meyer W, Hornickel I (2011) Tissue fixation—the most underestimated methodical feature of immunohistochemistry. In: Méndez-Vilas A, Diaz J (eds) Microscopy: science, technology, applications and education (microscopy book series, vol. 4). Formatex Research Center, Badajoz (in press)Google Scholar
  43. Meyer W, Schwarz R, Neurand K (1978) The skin of domestic mammals as a model for the human skin, with special reference to the domestic pig. Curr Probl Dermatol 7:39–52PubMedGoogle Scholar
  44. Meyer W, Uhr G, Schwarz R (1981) Untersuchungen an der Haut der Europäischen Wildkatze (Felis silvestris Schreber). I. Hautschichten und Hautdrüsen. Zool Jb Anat 106:163–185Google Scholar
  45. Meyer W, Schlesinger C, Neurand K (1987) Membrane-coating granules (MCGs) in porcine epidermis. Schweiz Arch Tierheilkde 129:133–137Google Scholar
  46. Meyer W, Zschemisch NH, Godynicki S (2003) The porcine ear skin as a model system for the human integument: Influence of storage conditions on basic features of epidermis structure and function—a histological and histochemical approach. Pol J Vet Sci 6:17–28PubMedGoogle Scholar
  47. Meyer W, Zschemisch NH, Lehmann H, Busche R, Kunz U (2005) Comparative distribution of sulphur, thiols and disulphides in the porcine stratum corneum. Eur J Dermatol 15:243–250PubMedGoogle Scholar
  48. Meyer W, Kacza J, Zschemisch NH, Godynicki S, Seeger J (2007) Observations on the actual structural conditions in the stratum superficiale dermidis of porcine ear skin, with special reference to its use as model for human skin. Ann Anat 189:143–156PubMedCrossRefGoogle Scholar
  49. Meyer W, Kloepper JE, Fleischer LG (2008) Demonstration of ß-glucan receptors in the skin of aquatic mammals—a preliminary report. Eur J Wildl Res 54:479–486CrossRefGoogle Scholar
  50. Meyer W, Schmidt J, Busche R, Jacob R, Naim HY (2009) Demonstration of lipids in plastic resin-embedded sections of skin material. J Microsc 233:5–9PubMedCrossRefGoogle Scholar
  51. Millonig G (1961) Advantages of a phosphate buffer for OsO4 solutions in fixation. J Appl Phys 32:1637Google Scholar
  52. Mizutani Y, Mitsutake S, Tsuji K, Kihara A, Igarashi Y (2009) Ceramide biosynthesis in keratinocyte and its role in skin function. Biochimie 91:784–790PubMedCrossRefGoogle Scholar
  53. Pearse AGE (1985) Histochemistry. Theoretical and applied, 4th edn, vol. 2: analytical technology. Churchill Livingstone, EdinburghGoogle Scholar
  54. Pfeiffer CJ, Jones FM (1993) Epidermal lipid in several cetacean species: ultrastructural observations. Anat Embryol 188:209–218PubMedCrossRefGoogle Scholar
  55. Reynolds ES (1963) The use of lead citrate of high pH as an electron opaque stain in electron microscopy. J Cell Biol 17:208–212PubMedCrossRefGoogle Scholar
  56. Richardson KC, Jarett L, Finke EH (1960) Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technol 35:313–323PubMedGoogle Scholar
  57. Roelandt T, Giddelo C, Heughebaert C, Denecker G, Hupe M, Crumrine D, Kusuma A, Haftek M, Roseeuw D, Declercq W, Feingold KR, Elias PM, Hachem JP (2009) The ‘caveolae brake hypothesis’ and the epidermal barrier. J Invest Dermatol 129:927–936PubMedCrossRefGoogle Scholar
  58. Slepkow ER, Rainey JK, Sykes BD, Fliegel L (2007) Structural and functional analysis of Na+/H+ exchanger. Biochem J 401:623–633CrossRefGoogle Scholar
  59. Stempak JG, Ward RT (1964) An improved staining method for electron microscopy. J Cell Biol 22:697–701PubMedCrossRefGoogle Scholar
  60. Uhr G (1984) Vergleichende Untersuchungen an Haut und Haarkleid von Mus musculus domesticus Rutty, 1772 und Rattus norvegicus Berkenhout, 1769. Diss rer nat thesis, University of Hannover, Hannover, GermanyGoogle Scholar
  61. Wenneckes T, van den Berg RJBH, Boot RG, van der Marel GA, Aerts JMFG (2009) Glycosphingolipids—nature, function, and pharmacological modulation. Angew Chem Int Ed 48:8848–8869CrossRefGoogle Scholar
  62. Wertz PW, Downing DT (1982) Glycolipids in mammalian epidermis: structure and function in the water barrier. Science 217:1261–1262PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Wilfried Meyer
    • 1
  • Judith Schmidt
    • 1
  • Johannes Kacza
    • 2
  • Roger Busche
    • 3
  • Hassan Y. Naim
    • 3
  • Ralf Jacob
    • 4
  1. 1.Institute for AnatomyUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany
  2. 2.Institute of Veterinary AnatomyUniversity of LeipzigLeipzigGermany
  3. 3.Institute for Physiological ChemistryUniversity of Veterinary Medicine Hannover, FoundationHannoverGermany
  4. 4.Institute of Cytobiology and CytopathologyUniversity of MarburgMarburgGermany

Personalised recommendations