European Journal of Wildlife Research

, Volume 57, Issue 2, pp 275–281 | Cite as

Determinants of the prevalence of the cloacal cestode Cloacotaenia megalops in teal wintering in the French Camargue

  • Andy J. Green
  • Boyko B. Georgiev
  • Anne-Laure Brochet
  • Michel Gauthier-Clerc
  • Hervé Fritz
  • Matthieu Guillemain
Original Paper

Abstract

Eurasian teal Anas crecca (n = 46,581) were inspected during ringing operations for the presence of the hymenolepidid cloacal cestode Cloacotaenia megalops between 1954 and 1971 while wintering in the Camargue, Southern France. These birds become infected when ingesting seed shrimps (Ostracoda) that act as intermediate hosts, largely while on migration across Western Europe. The prevalence ranged from 4% to 14% per year and increased significantly over time. This long-term trend was further supported by studying 366 teal shot in 2006–2008, for which prevalence of C. megalops was 27.6%. We found no evidence to suggest that this increase in prevalence has been caused by an increase in temperature, but eutrophication and an increase in duck densities are potential contributing factors. Adult teal were more likely to be infected than first-year birds and females more so than males, probably due to differences in diet and/or habitat use. Within a given age−sex class, heavier birds were more infected than lighter ones, suggesting low pathogenicity and a causal effect of ingestion rate. Within a year, the highest prevalence was observed in mid-winter.

Keywords

Cloacotaenia Ducks Helminths Long-term trends in parasite prevalence Ostracods Waterfowl 

References

  1. Bisset SA (1976) A possible intermediate host for Cloacotaenia megalops (Cestoda: Hymenolepididae), a common parasite of waterfowl in New Zealand. Mauri Ora 4:75–77Google Scholar
  2. Bondarenko SK, Kontrimavichus VL (2006) Fundamentals of Cestodology, vol. 14. In: Movsesyan SO (ed) Aploparaksidae of wild and domesticated birds. Nauka, Moscow, p 433, In RussianGoogle Scholar
  3. Brochet AL, Guillemain M, Fritz H, Gauthier-Clerc M, Green AJ (2010) Plant dispersal by teal (Anas crecca) in the Camargue: duck guts are more important than their feet. Freshw Biol 55:1262–1273CrossRefGoogle Scholar
  4. Bub H (1991) Bird trapping and bird banding. A handbook for trapping methods all over the world. Cornell University Press, New YorkGoogle Scholar
  5. Buscher HN (1965) Dynamics of the intestinal helminth fauna in three species of ducks. J Wildl Manage 29:772–781CrossRefGoogle Scholar
  6. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583PubMedCrossRefGoogle Scholar
  7. Canaris AG, Mena AC, Bristol JR (1981) Parasites of waterfowl from Southwest Texas. 3. The Green-Winged Teal, Anas crecca. J Wildl Dis 17:57–64PubMedGoogle Scholar
  8. Carney SM (1992) Species, age and sex identification of ducks using wing plumage. U.S. Department of the interior, U.S. Fish and Wildlife Service, Washington, p 144Google Scholar
  9. Crawley MJ (1993) Glim for ecologists. Blackwell Scientific, OxfordGoogle Scholar
  10. Danell K, Sjöberg K (1980) Foods of wigeon, teal, mallard and pintail during the summer in a northern Swedish lake. Viltrevy 11:141–167Google Scholar
  11. Delany S, Scott D (2006) Waterbird population estimates, 4th edn. Wetlands International, WageningenGoogle Scholar
  12. Devictor V, Julliard R, Couvet D, Jiguet F (2008) Birds are tracking climate warming, but not fast enough. Proc R Soc B Biol Sci 275:2743–2748CrossRefGoogle Scholar
  13. Dobrokhotova OV (1981) Host-parasitic system “larvae of cestodes – crustaceans” in biocenosis of Kurgaldzhin lakes. In: Gvozdev EV, Panin V, Sidorov EG (eds) Parasites as components of water and ground biocenoses of Kazakhstan. Nauka, Alma-Ata, pp 18–27 (In Russian)Google Scholar
  14. Dobrokhotova OV (1985) Biocoenotic relationship between ostracods and hymenolepidids of marsh birds in water bodies of Kazakhstan. In: Gvozdev EV (ed) Helminths of animals in the ecosystems of Kazakhstan. Nauka, Alma-Ata, pp 22–44, In RussianGoogle Scholar
  15. Drobney RD, Train CT, Fredrickson LH (1983) Dynamics of the platyhelminth fauna of wood ducks in relation to food-habits and reproductive state. J Parasitol 69:375–380PubMedCrossRefGoogle Scholar
  16. Dronen NO, Lindsey JR, Ross LM, Krise GM (1994) Helminths from mallard ducks, Anas platyrhynchos, wintering in the Post-Oak Savanna of South-Central Texas. Southwest Nat 39:203–205CrossRefGoogle Scholar
  17. Fedynich AM, Pence DB (1994) Helminth community structure and pattern in a migratory host (Anas platyrhynchos). Can J Zool 72:496–505CrossRefGoogle Scholar
  18. Figuerola J, Green AJ (2000) Haematozoan parasites and migratory behaviour in waterfowl. Evol Ecol 14:143–153CrossRefGoogle Scholar
  19. Gaston GR (1992) Green-winged Teal ingest epibenthic meiofauna. Estuaries 15:227–229CrossRefGoogle Scholar
  20. Geraci JR, St. Aubin DJ (1987) Effects of parasites on marine mammals. Int J Parasitol 17:407–414PubMedCrossRefGoogle Scholar
  21. Gray CA, Gray PN, Pence DB (1989) Influence of social-status on the helminth community of late-winter mallards. Can J Zool 67:1937–1944CrossRefGoogle Scholar
  22. Guillemain M, Fritz H, Johnson AR, Simon G (2007) What type of lean ducks do hunters kill? Weakest local ones rather than migrants. Wildlife Biol 13:102–107CrossRefGoogle Scholar
  23. Gvozdev EV, Maksimova AP (1978) Eucypris inflata, an intermediate host of avian cestodes in the biocoenosis of Lake Tengiz. Parazitologiya 12:339–344 (In Russian)Google Scholar
  24. Harvell CD, Mitchell CE, Ward JR, Altizer S, Dobson AP, Ostfeld RS, Samuel MD (2002) Climate warming and disease risks for terrestrial and marine biota. Science 296:2158–2162PubMedCrossRefGoogle Scholar
  25. Haukos DA, Neaville J (2003) Spatial and temporal changes in prevalence of a cloacal cestode in wintering waterfowl along the Gulf Coast of Texas. J Wildl Dis 39:152–160PubMedGoogle Scholar
  26. IPCC 2007: Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, Pachauri, R.K and Reisinger, A. (eds.)]. IPCC, Geneva, Switzerland, 104 ppGoogle Scholar
  27. Isenmann P (2004) Les oiseaux de Camargue et leurs habitats: Une histoire de cinquante ans 1954–2004. Ecologie. Buchet-Chastel, ParisGoogle Scholar
  28. Jarecka L (1958) Life cycle of Orlovilepis megalops (Nitzsch in Creplin) Spassky et Spasskaja, 1954. Bull ’Académie Pol Sciences Cl II Sér Sci Biol 6:335–338Google Scholar
  29. Johnson PTJ, Chase JM, Dosch KL, Hartson RB, Gross JA, Larson DJ, Sutherland DR, Carpenter SR (2007) Aquatic eutrophication promotes pathogenic infection in amphibians. Proc Natl Acad Sci USA 104:15781–15786PubMedCrossRefGoogle Scholar
  30. Kear J (2005) Bird families of the world: ducks, geese and swans. Oxford University Press, OxfordGoogle Scholar
  31. Kotecki N (1970) Circulation of the cestode fauna Anseriformes in the municipal zoological garden in Warszawa. Acta Parasitol Pol 17:329–355Google Scholar
  32. Krapu GL, Reinecke KJ (1992) Foraging ecology and nutrition. In: Batt BDJ, Afton AD, Anderson MG, Ankney CD, Johnson DH, Kadlec JA, Krapu GL (eds) Ecology and management of breeding waterfowl. University of Minnesota Press, Minneapolis and London, pp 1–29Google Scholar
  33. Külköylüoğlu O (2004) On the usage of ostracods (Crustacea) as bioindicator species in different aquatic habitats in the Bolu region, Turkey. Ecol Indic 4:139–147CrossRefGoogle Scholar
  34. Lebarbenchon C, Poulin R, Gauthier-Clerc M, Thomas F (2007) Parasitological consequences of overcrowding in protected areas. EcoHealth 3:303–307CrossRefGoogle Scholar
  35. Lebarbenchon C, Brown SP, Poulin R, Gauthier-Clerc M, Thomas F (2008) Evolution of pathogens in a man-made world. Mol Ecol 17:475–484PubMedCrossRefGoogle Scholar
  36. Lebarbenchon C, Albespy F, Brochet AL, Grandhomme V, Renaud F, Fritz H, Green AJ, Thomas F, van der Werf S, Aubry P, Guillemain M, Gauthier-Clerc M (2009) Spread of avian influenza viruses by common teal (Anas crecca) in Europe. PLoS ONE 4(10):e7289PubMedCrossRefGoogle Scholar
  37. Legendre P, Legendre L (1998) Numerical ecology. Elsevier, AmsterdamGoogle Scholar
  38. Maksimova AP (1989) Hymenolepidid cestodes of aquatic birds in Kazakhstan. Alma-Ata, Nauka, p 224, In RussianGoogle Scholar
  39. Newcombe RG (1998) Two-sided confidence intervals for the single proportion: comparison of seven methods. Stat Med 17:857–872PubMedCrossRefGoogle Scholar
  40. Ogilvie MA (1978) Wild Geese. T. & A.D. Poyser, Berkhamsted, p 350Google Scholar
  41. Olney PJS (1963) The food and feeding habits of teal Anas crecca L. Proc Zool Soc (London) 140:169–210CrossRefGoogle Scholar
  42. Price JI (1985) Immunizing Canada Geese against Avian Cholera. Wildl Soc Bull 13:508–515Google Scholar
  43. Redpath SM, Mougeot F, Leckie FM, Elston DA, Hudson PJ (2006) Testing the role of parasites in driving the cyclic population dynamics of a gamebird. Ecol Lett 9:410–418PubMedCrossRefGoogle Scholar
  44. Ruiz F, Abad M, Bodergat AM, Carbonel P, Rodriguez-Lazaro J, Yasuhara M (2005) Marine and brackish-water ostracods as sentinels of anthropogenic impacts. Earth Sci Rev 72:89–111CrossRefGoogle Scholar
  45. Savage C, Leavitt PR, Elmgren R (2010) Effects of land use, urbanization, and climate variability on coastal eutrophication in the Baltic Sea. Limnol Oceanogr 55:1033–1046CrossRefGoogle Scholar
  46. Scott DA, Rose PM (1996) Atlas of Anatidae populations in Africa and Western Eurasia. Wetlands International, WageningenGoogle Scholar
  47. Shaw MG, Kocan AA (1980) Helminth fauna of waterfowl in Central Oklahoma. J Wildl Dis 16:59–64PubMedGoogle Scholar
  48. Smith VH, Tilman GD, Nekola JC (1999) Eutrophication: impacts of excess nutrient inputs on freshwater, marine, and terrestrial ecosystems. Environ Pollut 100:179–196PubMedCrossRefGoogle Scholar
  49. Sokal RR, Rohlf FJ (1995) Biometry: the principles and practice of statistics in biological research, 3rd edn. W. H. Freeman and Co., New YorkGoogle Scholar
  50. Spasskaya LP (1966) Cestodes of birds in the USSR. Hymenolepididae. Moscow, Nauka, 698pp. (In Russian)Google Scholar
  51. StatSoft (2001) Statistica 6.0. Tulsa, USAGoogle Scholar
  52. Tamisier A, Grillas P (1994) A review of habitat changes in the Camargue: an assessment of the effects of the loss of biological diversity on the wintering waterfowl community. Biol Conserv 70:39–47CrossRefGoogle Scholar
  53. Théron A, Pointier JP, Morand S, Imbert-Establet D, Borel G (1992) Long-term dynamics of natural populations of Schistosoma mansoni among Rattus rattus in patchy environment. Parasitology 104:291–298PubMedCrossRefGoogle Scholar
  54. Thomas F, Renaud F, Guégan JF (eds) (2005) Parasitism and ecosystems. Oxford University Press, OxfordGoogle Scholar
  55. Tolkacheva LM (1975) Crustaceans – intermediate hosts of cestodes of aquatic and marsh birds in the Karasuk lakes (USSR). Tr Biologicheskogo Inst Sibirskoe Otdelenie Akad Nauk SSSR 17:114–143 (In Russian)Google Scholar
  56. Valtonen ET, Helle E, Poulin R (2004) Stability of Corynosoma populations with fluctuating population densities of the seal definitive host. Parasitology 129:635–642PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Andy J. Green
    • 1
  • Boyko B. Georgiev
    • 2
    • 3
  • Anne-Laure Brochet
    • 4
    • 5
  • Michel Gauthier-Clerc
    • 5
  • Hervé Fritz
    • 6
  • Matthieu Guillemain
    • 4
  1. 1.Department of Wetland EcologyEstación Biológica de Doñana-CSICSevillaSpain
  2. 2.Central Laboratory of General EcologyBulgarian Academy of SciencesSofiaBulgaria
  3. 3.Department of ZoologyNatural History MuseumLondonUK
  4. 4.Office National de la Chasse et de la Faune SauvageCNERA Avifaune MigratriceArlesFrance
  5. 5.Centre de Recherche de La Tour du ValatArlesFrance
  6. 6.CNRS UMR 5558 Biométrie et Biologie EvolutiveUniversité Claude Bernard Lyon 1Villeurbanne cedexFrance

Personalised recommendations