Advertisement

European Journal of Wildlife Research

, Volume 57, Issue 1, pp 143–148 | Cite as

Fluid and particle passage in three duiker species

  • Marcus ClaussEmail author
  • Nicola Lunt
  • Sylvia Ortmann
  • Amy Plowman
  • Daryl Codron
  • Jürgen Hummel
Original Paper

Abstract

Ruminants are characterised by two different types of reticulorumen (RR) physiology. ‘Cattle-type’ ruminants have, amongst other features such as RR contents stratification and a heterogenous intraruminal papillation, a distinct difference between the mean retention time (MRT) of small particles and fluids (the ratio is called the selectivity factor, SF). ‘Moose-type’ ruminants have RR contents that are less stratified, a more homogenous intraruminal papillation and low SFs, indicating less difference in the MRT of small particles and fluids. To date, physiological data indicating a ‘moose-type’ physiology have only been measured in giraffids and Odocoilean cervids, raising the question whether it is limited to these taxonomic groups only. Here, we measured MRTs of fluids and particles in five duikers (Bovidae, Cephalophinae) from three species (Sylvicapra grimmia, Cephalophus monticola and Cephalophus sylvicultor) and found SFs in the RR of 1.27 ± 0.18—well within the range of these other browsers. These results are the first physiological indication that a ‘moose-type’ physiology may also occur in bovid species and thus might represent a true convergent adaptation.

Keywords

Stratification Rumen physiology Particle retention Browser Grazer 

Notes

Acknowledgements

We thank the Director and staff at Marwell Zimbabwe Trust for assistance with sample collection and Heidrun Barleben from the IZW for her engaged support in the lab. Whitley Wildlife Conservation Trust (UK) and Marwell Wildlife (UK) funded duiker husbandry.

References

  1. Behrend A, Lechner-Doll M, Streich WJ, Clauss M (2004) Seasonal faecal excretion, gut fill, liquid and particle marker retention in mouflon (Ovis ammon musimon), and a comparison with roe deer (Capreolus capreolus). Acta Theriol 49:503–515CrossRefGoogle Scholar
  2. Clauss M, Lechner-Doll M (2001) Differences in selective reticulo-ruminal particle retention as a key factor in ruminant diversification. Oecologia 129:321–327Google Scholar
  3. Clauss M, Deutsch A, Lechner-Doll M, Flach EJ, Tack C (1998) Passage rate of fluid and particle phase in captive giraffe (Giraffa camelopardalis). Adv Ethol 33:98Google Scholar
  4. Clauss M, Lechner-Doll M, Streich WJ (2003) Ruminant diversification as an adaptation to the physicomechanical characteristics of forage. A reevaluation of an old debate and a new hypothesis. Oikos 102:253–262CrossRefGoogle Scholar
  5. Clauss M, Hofmann RR, Hummel J, Adamczewski J, Nygren K, Pitra C, Streich WJ, Reese S (2006a) The macroscopic anatomy of the omasum of free-ranging moose (Alces alces) and muskoxen (Ovibos moschatus) and a comparison of the omasal laminal surface area in 34 ruminant species. J Zool Lond 270:346–358CrossRefGoogle Scholar
  6. Clauss M, Hummel J, Streich WJ (2006b) The dissociation of the fluid and particle phase in the forestomach as a physiological characteristic of large grazing ruminants: an evaluation of available, comparable ruminant passage data. Eur J Wildl Res 52:88–98CrossRefGoogle Scholar
  7. Clauss M, Schwarm A, Ortmann S, Streich WJ, Hummel J (2007) A case of non-scaling in mammalian physiology? Body size, digestive capacity, food intake, and ingesta passage in mammalian herbivores. Comp Biochem Physiol A 148:249–265CrossRefGoogle Scholar
  8. Clauss M, Hofmann RR, Fickel J, Streich WJ, Hummel J (2009) The intraruminal papillation gradient in wild ruminants of different feeding types: implications for rumen physiology. J Morphol 270:929–942CrossRefPubMedGoogle Scholar
  9. Clauss M, Adamczewski J, Hofmann RR (2010a) Surface enlargement in the rumen of free-ranging muskoxen (Ovibos moschatus). Eur J Wildl Res 56:181–185CrossRefGoogle Scholar
  10. Clauss M, Hofmann RR, Streich WJ, Fickel J, Hummel J (2010b) Convergence in the macroscopic anatomy of the reticulum in wild ruminant species of different feeding types and a new resulting hypothesis on reticular function. J Zool Lond 281:26–38Google Scholar
  11. Clauss M, Hume ID, Hummel J (2010c) Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4:979–992Google Scholar
  12. Codron D, Clauss M (2010) Differences in rumen fluid concentrations support stratification as a constraint to browsing and grazing in ruminants (submitted)Google Scholar
  13. Conklin-Brittain NL, Dierenfeld ES (1996) Small ruminants: digestive capacity differences among four species weighing less than 20 kg. Zoo Biol 15:481–490CrossRefGoogle Scholar
  14. Demment MW, Van Soest PJ (1985) A nutritional explanation for body size patterns of ruminant and nonruminant herbivores. Am Nat 125:641–672CrossRefGoogle Scholar
  15. Dierenfeld ES, Mueller PJ, Hall MB (2002) Duikers: native food composition, micronutrient assessment, and implications for improving captive diets. Zoo Biol 21:185–196CrossRefGoogle Scholar
  16. Faurie AS, Perrin MR (1995) Rumen morphology and volatile fatty acid production in the blue duiker and the red duiker. Mamm Biol 60:73–84Google Scholar
  17. Flores-Miyamoto K, Clauss M, Ortmann S, Sainsbury AW (2005) The nutrition of captive lowland anoa (Bubalus depressicornis): a study on ingesta passage, intake, digestibility, and a diet survey. Zoo Biol 24:125–134CrossRefGoogle Scholar
  18. Gagnon M, Chew AE (2000) Dietary preferences in extant African Bovidae. J Mammal 81:490–511CrossRefGoogle Scholar
  19. Gross JE, Alkon PU, Demment MW (1996) Nutritional ecology of dimorphic herbivores: digestion and passage rates in Nubian ibex. Oecologia 107:170–178CrossRefGoogle Scholar
  20. Grovum WL, Williams VJ (1973a) Rate of passage of digesta in sheep: 4. Passage of marker through the alimentary tract and the biological relevance of rate-constants derived from the changes in concentration of marker in faeces. Br J Nutr 30:313–329CrossRefPubMedGoogle Scholar
  21. Grovum WL, Williams VJ (1973b) Rate of passage of digesta in sheep. 3. Differential rates of passage of water and dry matter from the reticulo-rumen, abomasum and caecum and proximal colon. Br J Nutr 30:231–240CrossRefPubMedGoogle Scholar
  22. Hart JA (1986) Comparative dietary ecology of a community of frugivorous forest ungulates in Zaire. Ph.D. Dissertation, Michigan State University, East Lansing, MIGoogle Scholar
  23. Hofmann RR (1973) The ruminant stomach. East African Literature Bureau, NairobiGoogle Scholar
  24. Hofmann RR (1989) Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78:443–457CrossRefGoogle Scholar
  25. Hofmann RR, Streich WJ, Fickel J, Hummel J, Clauss M (2008) Convergent evolution in feeding types: salivary gland mass differences in wild ruminant species. J Morphol 269:240–257CrossRefPubMedGoogle Scholar
  26. Hummel J, Clauss M, Zimmermann W, Johanson K, Norgaard C, Pfeffer E (2005) Fluid and particle retention in captive okapi (Okapia johnstoni). Comp Biochem Physiol A 140:436–444CrossRefGoogle Scholar
  27. Hummel J, Steuer P, Südekum K-H, Hammer S, Hammer C, Streich WJ, Clauss M (2008) Fluid and particle retention in the digestive tract of the addax antelope (Addax nasomaculatus)—adaptations of a grazing desert ruminant. Comp Biochem Physiol A 149:142–149CrossRefGoogle Scholar
  28. Kaske M, Groth A (1997) Changes in factors affecting the rate of digesta passage through pregnancy and lactation in sheep fed on hay. Reprod Nutr Dev 37:573–588CrossRefPubMedGoogle Scholar
  29. Lechner I, Barboza P, Collins W, Fritz J, Günther D, Hattendorf B, Hummel J, Südekum K-H, Clauss M (2010) Differential passage of fluids and different-sized particles in fistulated oxen (Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces): rumen particle size discrimination is independent from contents stratification. Comp Biochem Physiol A 155:211–222Google Scholar
  30. Lechner-Doll M, Rutagwenda T, Schwartz HJ, Schultka W, von Engelhardt W (1990) Seasonal changes of ingesta mean retention time and forestomach fluid volume in indigenous camels, cattle, sheep and goats grazing in a thornbush savanna pasture in Kenya. J Agric Sci (Cambridge) 115:409–420CrossRefGoogle Scholar
  31. Luginbuhl JM, Pond KR, Burns JC (1990) Physical limits to ruminal escape: experiences with the blue duiker. In: Oftedal OT, Barboza PS (eds) Digestive strategies of animals, a symposium. National Zoological Park, Smithsonian Institution, Washington DC, pp 10–11Google Scholar
  32. Mambrini M, Peyraud JL (1997) Retention time of feed particles and liquids in the stomachs and intestines of dairy cows. Direct measurement and calculation based on fecal collection. Reprod Nutr Dev 37:427–442CrossRefPubMedGoogle Scholar
  33. Mendoza M, Palmqvist P (2006) Characterizing adaptive morphological patterns related to diet in Bovidae. Acta Zoologica Sinica 52:988–1008Google Scholar
  34. Molloy L, Hart JA (2002) Duiker food selection: palatability trials using natural foods in the Ituri Forest, Democratic Republic of Congo. Zoo Biol 21:149–159CrossRefGoogle Scholar
  35. Pérez-Barberìa FJ, Elston DA, Gordon IJ, Illius AW (2004) The evolution of phylogenetic differences in the efficiency of digestion in ruminants. Proc -Royal Soc B 271:1081–1090CrossRefGoogle Scholar
  36. Plowman AB (2002) Nutrient intake and apparent digestibility of diets consumed by captive duikers at the Dambari Field Station, Zimbabwe. Zoo Biol 21:135–147CrossRefGoogle Scholar
  37. Renecker LA, Hudson RJ (1990) Digestive kinetics of moose, wapiti and cattle. Anim Prod 50:51–61CrossRefGoogle Scholar
  38. Schwarm A, Ortmann S, Wolf C, Streich WJ, Clauss M (2008) Excretion patterns of fluids and particle passage markers of different size in banteng (Bos javanicus) and pygmy hippopotamus (Hexaprotodon liberiensis): two functionally different foregut fermenters. Comp Biochem Physiol A 150:32–39CrossRefGoogle Scholar
  39. Schwarm A, Ortmann S, Wolf C, Streich WJ, Clauss M (2009) Passage marker excretion in red kangaroo (Macropus rufus), collared peccary (Pecari tajacu) and colobine monkeys (Colobus angolensis, C. polykomos, Trachypithecus johnii). J Exp Zool 311:647–661CrossRefGoogle Scholar
  40. Shipley LA, Felicetti L (2002) Fiber digestibility and nitrogen requirements of blue duikers. Zoo Biol 21:123–134CrossRefGoogle Scholar
  41. Thielemans MF, Francois E, Bodart C, Thewis A (1978) Mesure du transit gastrointestinal chez le porc a l'aide des radiolanthanides. Comparaison avec le mouton. Ann Biol Anim Biochim Biophys 18:237–247CrossRefGoogle Scholar
  42. Udén P, Colucci PE, Van Soest PJ (1980) Investigation of chromium, cerium and cobalt as markers in digesta rates of passage studies. J Sci Food Agric 31:625–632CrossRefPubMedGoogle Scholar
  43. Wenninger PS, Shipley LA (2000) Harvesting, rumination, digestion, and passage of fruit and leaf diets by a small ruminant, the blue duiker. Oecologia 123:466–474CrossRefGoogle Scholar
  44. Wilson VJ (2005) Duikers of Africa. Chipangali Wildlife Trust, Duiker Research and Breeding Centre, ZimbabweGoogle Scholar
  45. Wylie MJ, Ellis WC, Matis JH, Bailey EM, James WD, Beever DE (2000) The flow of forage particles and solutes through segments of the digestive tracts of cattle. Br J Nutr 83:295–306PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • Marcus Clauss
    • 1
    Email author
  • Nicola Lunt
    • 2
  • Sylvia Ortmann
    • 3
  • Amy Plowman
    • 4
  • Daryl Codron
    • 1
  • Jürgen Hummel
    • 5
  1. 1.Clinic for Zoo Animals, Exotic Pets and Wildlife, Vetsuisse FacultyUniversity of ZurichZurichSwitzerland
  2. 2.Antelope ProjectMarwell Zimbabwe TrustBulawayoZimbabwe
  3. 3.Leibniz Institute for Zoo and Wildlife Research (IZW)BerlinGermany
  4. 4.Whitley Wildlife Conservation TrustDevonUK
  5. 5.Institute of Animal ScienceUniversity of BonnBonnGermany

Personalised recommendations